
Parinya Chalermsook
Bundit Laekhanukit (Eds.)

LN
CS

 1
35

38 Approximation and
Online Algorithms
20th International Workshop, WAOA 2022
Potsdam, Germany, September 8–9, 2022
Proceedings

Lecture Notes in Computer Science 13538

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

Parinya Chalermsook · Bundit Laekhanukit (Eds.)

Approximation and
Online Algorithms
20th International Workshop, WAOA 2022
Potsdam, Germany, September 8–9, 2022
Proceedings

Editors
Parinya Chalermsook
Aalto University
Espoo, Finland

Bundit Laekhanukit
Shanghai University of Finance
and Economics
Shanghai, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-18366-9 ISBN 978-3-031-18367-6 (eBook)
https://doi.org/10.1007/978-3-031-18367-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-18367-6

Preface

WAOA 2022 received 21 submissions which were distributed among the program com-
mittee members. Each of the submissions was initially reviewed by three referees. How-
ever, due to a short review timeframe, almost all reviewswerewritten by the PCmembers
themselves. During the discussion phase, additional opinions were solicited in some dif-
ficult cases. The EasyChair systemwas used tomanage the paper selection process, from
submissions to notifications. This year is the first timeWAOA has adopted a lightweight
double-blind reviewing process. In our opinion, it worked out relatively well.

Wewould like to thank all the authorswho submitted their papers toWAOA2022, the
invited keynote speaker, Tobias Mömke, who agreed to deliver the talk in Potsdam, the
PCmembers who did an excellent job despite such a short timeframe, and the organizers
from the Hasso Plattner Institute.

We are looking forward to seeing everyone again next year.

August 2022 Parinya Chalermsook
Bundit Laekhanukit

Organization

Program Committee Chairs

Parinya Chalermsook Aalto University, Finland
Bundit Laekhanukit Shanghai University of Finance and Economics,

China

Steering Committee

Evripidis Bampis Sorbonne Université, France
Thomas Erlebach Durham University, UK
Christos Kaklamanis University of Patras, Greece
Nicole Megow Universität Bremen, Germany
Laura Sanita Bocconi University, Italy
Martin Skutella Technische Universität Berlin, Germany
Roberto Solis-Oba University of Western Ontario, Canada
Klaus Jansen Christian-Albrechts-Universität zu Kiel, Germany

Program Commitee

Hyung-Chan An Yonsei University, South Korea
Amey Bhangale University of California, Riverside, USA
Umang Bhaskar Tata Institute of Fundamental Research, India
Parinya Chalermsook Aalto University, Finland
Karthekeyan Chandrasekaran University of Illinois Urbana-Champaign, USA
Karthik CS Rutgers University, USA
Syamantak Das Indraprastha Institute of Information Technology,

India
Franziska Eberle London School of Economics and Political

Science, UK
Jittat Fakcharoenphol Kasetsart University, Thailand
Zachary Friggstad University of Alberta, Canada
Takuro Fukunaga Chuo University, Japan
Waldo Gálvez Universidad de O’Higgins, Chile
Chien-Chung Huang École Normale Supérieure, France
Łukasz Jeż University of Wrocław, Poland
Bundit Laekhanukit Shanghai University of Finance and Economics,

China
Pasin Manurangsi Google Research, USA

viii Organization

Eunjin Oh Pohang University of Science and Technology,
South Korea

Hanna Sumita Tokyo Institute of Technology, Japan
Zhihao Tang Shanghai University of Finance and Economics
Seeun William Umboh The University of Sydney, Australia
Yuhao Zhang Shanghai Jiao Tong University, China

Additional Referees

Kelin Luo
Mohsen Rezapour
Kamyar Khodamoradi
Ramin Mousavi
Zhihao Jiang

Local Organization

Tobias Friedrich Hasso Plattner Institute, University of Potsdam,
Germany

Simon Krogmann Hasso Plattner Institute, University of Potsdam,
Germany

Timo Kötzing Hasso Plattner Institute, University of Potsdam,
Germany

Gregor Lagodzinski Hasso Plattner Institute, University of Potsdam,
Germany

Pascal Lenzner Hasso Plattner Institute, University of Potsdam,
Germany

A PTAS for Unsplittable Flow on a Path
(Invited Talk)

Tobias Mömke

University of Ausburg

Abstract. In the Unsplittable Flow on a Path problem (UFP) we are given
a pathwith edge capacities, and a set of taskswhere each task is character-
ized by a subpath, a demand, and aweight. The goal is to select a subset of
tasks of maximum total weight such that the total demand of the selected
tasks using each edge e is at most the capacity of e. The problem admits a
QPTAS [Bansal, Chakrabarti, Epstein, Schieber, STOC’06; Batra, Garg,
Kumar, M ömke, Wiese, SODA’15]. After a long sequence of improve-
ments [Bansal, Friggstad, Khandekar, Salavatipour, SODA’09; Bonsma,
Schulz,Wiese, FOCS’11; Anagnostopoulos, Grandoni, Leonardi,Wiese,
SODA’14; Grandoni, Mömke, Wiese, Zhou, STOC’18], the best known
polynomial time approximation algorithm for UFP has an approximation
ratio of 1+1/(e+1)+ε < 1.269 [Grandoni,Mömke,Wiese, SODA’22]. It
has been an open question whether this problem admits a PTAS.We solve
this open question and present a polynomial time (1+ ε)-approximation
algorithm for UFP.

Contents

Locating Service and Charging Stations . 1
Rajni Dabas, Naveen Garg, Neelima Gupta, and Dilpreet Kaur

Graph Burning and Non-uniform k-centers for Small Treewidth 20
Matej Lieskovský and Jiří Sgall

Scheduling with Machine Conflicts . 36
Moritz Buchem, Linda Kleist, and Daniel Schmidt genannt Waldschmidt

Knapsack Secretary Through Boosting . 61
Andreas Abels, Leon Ladewig, Kevin Schewior, and Moritz Stinzendörfer

Scheduling Appointments Online: The Power of Deferred
Decision-Making . 82

Devin Smedira and David Shmoys

Canadian Traveller Problem with Predictions . 116
Evripidis Bampis, Bruno Escoffier, and Michalis Xefteris

The Power of Amortized Recourse for Online Graph Problems 134
Alison Hsiang-Hsuan Liu and Jonathan Toole-Charignon

An Improved Algorithm for Open Online Dial-a-Ride . 154
Júlia Baligács, Yann Disser, Nils Mosis, and David Weckbecker

Stochastic Graph Exploration with Limited Resources . 172
Ilan Reuven Cohen

Adaptivity Gaps for the Stochastic Boolean Function Evaluation Problem 190
Lisa Hellerstein, Devorah Kletenik, Naifeng Liu, and R. Teal Witter

On Streaming Algorithms for Geometric Independent Set and Clique 211
Sujoy Bhore, Fabian Klute, and Jelle J. Oostveen

Approximating Length-Restricted Means Under Dynamic Time Warping 225
Maike Buchin, Anne Driemel, Koen van Greevenbroek, Ioannis Psarros,
and Dennis Rohde

Author Index . 255

Locating Service and Charging Stations

Rajni Dabas1, Naveen Garg2(B), Neelima Gupta1, and Dilpreet Kaur2

1 Department of Computer Science, University of Delhi, New Delhi, India
{rajni,ngupta}@cs.du.ac.in

2 Indian Institute of Technology Delhi, New Delhi, India
{naveen,dilpreet}@cse.iitd.ac.in

Abstract. In this paper, we consider the problem of locating service
and charging stations to serve commuters. In the service station location
problem we are given the paths followed by m clients and wish to locate k
service stations, from a set of feasible locations, such that the maximum
detour that a client has to take is minimized. We give a solution that
has a maximum detour 3OPT + L where L is the length of the longest
client-path.

Electric vehicles have a limited range and charging stations need to be
located so that a client can drive from the source to destination without
running out of charge. We consider two variants of the problem. In the
first, we are given only the source and destination of each client and have
to locate facilities at some subset of locations such that every client has
a feasible path. In the second variant, we are also given the path that
a client wishes to take and have to locate the facilities such that each
client can follow its path without any detours. For both problems, our
objective is to minimize the number of charging stations.

For all three problems, when the underlying graph is a tree and the
facility can be located at any vertex on the tree, we show that the problem
can be solved in polynomial time. On general graphs, the problem with
source-destination pairs is at least as hard as the node-weighted group-
Steiner tree but if we allow vehicles in our solution to have a range
of 4 times that of the optimum then we obtain an 8-approximation.
For the problem with specified paths, we show that finding an o(logm)
approximation is hard even when vehicles of our solution have a range
that is a constant times larger than that of the optimum solution.

Keywords: Facility location · Approximation algorithms

1 Introduction

In this paper, we consider facility location problems where clients correspond
to paths in a network. This, for instance, is the case when we are given paths
along which commuters in a city drive daily and wish to locate gas stations so

Rajni Dabas was supported by a UGC-JRF and Naveen Garg was supported by the
Janaki and KA Iyer Chair.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Chalermsook and B. Laekhanukit (Eds.): WAOA 2022, LNCS 13538, pp. 1–19, 2022.
https://doi.org/10.1007/978-3-031-18367-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18367-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-18367-6_1

2 R. Dabas et al.

that each user can fill gas without taking a significant detour from their daily
commute. We assume that the number of facilities (gas/service stations) is fixed,
say k. If for some client no gas station is located on her commute path then the
client has to take a detour to the closest gas station from her path.

We first observe that the distance of a path from a facility does not define a
metric and this makes facility location problems where clients are paths, very dif-
ferent from traditional facility location problems where clients are considered as
vertices in a graph/points in a metric space. Facility location problems have been
considered under different objective functions; in this paper, we will be extend-
ing the k-center and k-supplier problems to the setting of paths. Recall that in
the k-center problem our objective is to locate k facilities so as to minimize the
maximum distance of a client from its nearest facility. The k-supplier problem is
identical to the k-center problem with the only difference that the centres can be
chosen only from a given set of possible locations. Unless P=NP, the best approx-
imation ratio known and possible for k-center and the k-supplier problems are
2, 3 respectively [11]. For the k-center problem with paths as clients, we obtain
a polynomial-time algorithm on trees and show that the problem is NP-hard if
the facilities can be opened only on a subset of the vertices. On general graphs,
we show how to open k facilities from a given set of locations such that every
path is within distance 3OPT+ L of an open facility where L is the length of the
longest path and OPT is the cost of the optimum solution.

We also consider the setting in which facilities are charging stations for Elec-
tric Vehicles (EV). An EV has a certain fixed range, say B, on a full charge
and we should locate charging stations in a manner such that every vehicle can
travel from its source to destination without running out of charge. We assume
charging stations can only be located on a subset of vertices1, F , and vehicles
are allowed to use all of their charge to reach their destination. We consider two
variants of the problem. In the first variant, we do not specify the path that
a vehicle is required to take but only its source and destination. In the second
variant, a path between the source and destination is specified and the vehicle
is not allowed to deviate from it. For both these variants, our objective is to
minimize the number of charging stations needed.

For both variants of the problem on trees, we assume that charging stations
can be located at any vertex and give exact polynomial-time algorithms. How-
ever, on general graphs (and assuming charging stations can only be on a subset
of vertices) these two variants behave rather differently in their approximability.
When the route of each vehicle is fixed, then a simple approximation preserving
reduction from the set cover problem establishes that one cannot approximate
the problem better than c ln m, where c is a constant and m is the number of
clients. Allowing the vehicles of our solution to have a range α times that of the
vehicles in the optimum solution does not provide any advantage and the same
reduction can be extended to show that an approximation better than cα−1 ln m
is not possible unless P=NP.

1 In a setting where the source of a client is her home, while it is reasonable to assume
that the client charges her own vehicle, it would be unreasonable to put a charging
station for other vehicles at her home.

Locating Service and Charging Stations 3

When we are only specified the source-destination for each vehicle and are free
to choose a route the problem is equivalent to finding a minimum node-weighted
group Steiner tree and cannot be approximated better than Ω(log2 m), where
m is the number of clients. However, we can in polynomial time, find a solution
which opens at most O(log m)OPT charging stations where OPT is the minimum
number of charging stations to service vehicles which have range half of the
range of the vehicles in our solution. Further relaxation of the range of vehicles
in our solution to 4 times the range of vehicles in the optimum solution leads to
an 8-approximation; this result uses an interesting connection to the k-supplier
problem [11].

Although our exact polynomial time algorithm on trees are primarily greedy
algorithms, the correctness arguments require careful and delicate analysis. Our
approximation guarantee for the service station location problem on general
graphs is best possible. It is hard to obtain constant approximation algorithms
for the two variants of charging station location considered in this paper, but we
show that this is possible with some resource augmentation (assuming vehicles
have larger range) for one of the variants.

2 Preliminaries and Related Work

Let G = (V,E) be an undirected graph, l : E → R
+ a length function on the

edges and Z ⊆ V a set of terminals. Let |V | = n and C ⊆ Z × Z be the source-
destination pairs of a set of m clients. Let sj ∈ Z be the source and tj ∈ Z
the destination of client j ∈ [m]. For some of the problems considered, we also
specify, for every client j, a path Pj between sj and tj in G. We call such a path
a client-path and let P = {Pj , j ∈ [m]}. Let F ⊆ V denote the set of vertices on
which we can open the facilities - the charging and service stations.

The distance of a client-path Pj from a facility at vertex vi is the length of
the shortest path from vi to a vertex on Pj ; we denote this quantity by d(i, j).
It is important to note that d is not a metric. In particular, it could be the
case that for client-paths Pj1 , Pj2 and facility locations vi1 , vi2 we have that
d(i1, j1) > d(i2, j1) + d(i2, j2) + d(i1, j2).

For the setting of electric vehicles, we assume that every vehicle starts with
a full charge from its source and can arrive at its destination fully discharged.
The range of an EV is the maximum distance it can travel on a full charge. For
client j, a path P from sj to tj is feasible with respect to a certain set of charging
stations if the client can follow P without running out of charge.

We now define the various problems considered in this paper.

Service Station Location. Given graph G, edge lengths l, client-paths P, and
an integer k, we wish to locate k service stations on vertices in F such that
the maximum distance of a client-path from the nearest service station is
minimized. We denote this problem by SvSP(G, l,P, k).

Charging Station Location for source-destination pairs. Given graph
G, edge lengths l, source-destination pairs for clients C, and range B, we
wish to locate the smallest number of charging stations on vertices in F such

4 R. Dabas et al.

that there is a feasible path for every client. We denote this problem by
ChSD(G, l, C,B).

Charging Station Location with specified paths. Given a graph G, edge
lengths l, client-paths P, and range B, we wish to locate the smallest num-
ber of charging stations on vertices in F such that every client-path in P is
feasible. We denote this problem by ChSP(G, l,P, B).

Related Work: Facility location problems in which there is a path associated
with each client and the objective is to locate k facilities so as to cover the
maximum number of paths (with bounded detours and without detours) have
been extensively studied [1,2,12,17,18]. Hodgson [12] and Berman et al. [2] were
the first ones to study the facility location problem in which clients are paths.
They consider the problem in which the client paths are specified and clients
are not allowed to take detours; they identify optimum locations for k facilities
so as to cover the maximum number of clients (a client is said to be covered
if at least one facility is opened on its path). Mitra et al. [17] considered the
same problem in the setting of cellular networks. Berman et al. [1] and Mitra
et al. [18] generalised the problem to allow the clients to take small (bounded)
detours. The problems considered in these papers are different from ours as
they aim to maximise the number of clients covered whereas our objective is
to minimise either the detour that a client may have to take (SvSP()) with k
facilities or the number of facilities to be opened (ChSD(), ChSP()) with limited
range of electric vehicles.

Kuby and Lim [15] and Kuby et al. [16] consider the problem to capture
limited range of vehicles. A client is now said to be covered if sufficient charging
stations are opened on its path (i.e. no detours) so that it can follow the path
without running out of charge. Several heuristics have been provided in these
papers without any approximation guarantee.

Storandt and Funke [20] consider a problem similar to ChSD() and give an
O(log n) approximation via an algorithm for strongly connected dominating sets
(SCDS). Although their results also apply to directed graphs, they crucially
assume that charging stations can be located at any vertex of the graph. We
believe that restricting the location of charging stations to a subset of facilities
makes the problem much harder (see for example Claim 3.2). Funke et al. [6,7]
consider a problem similar to ChSP() in which the charging stations should be
located such that the shortest path (with and without detours) between every
pair of vertices in the graph is feasible. They observe that the problem of min-
imizing the number of charging stations needed can be formulated as a hitting
set problem and obtain an O(log n) approximation.

3 Locating Service Stations

In this section, we consider how to locate k service stations so as to minimize
the maximum distance of any client path from the nearest station. When the
client-path is a single vertex this is the k-center problem which is known to be
NP-hard and for which the best possible approximation is 2.

Locating Service and Charging Stations 5

3.1 Linear Program and the Integrality Gap

For a given instance SvSP(G, l,P, k), let D be a guess on the optimum value.
Let yi be an indicator variable which is 1 iff a facility is opened at vertex vi ∈ F .
Thus, ∑

i:vi∈F

yi = k

For a client j and vertex vi ∈ F such that d(i, j) ≤ D, let xij = 1 iff j is served
by facility opened at vi. Clearly,

i : vi ∈ F, j ∈ [m] xij ≤ yi

j ∈ [m]
∑

i:vi∈F xij ≥ 1

If there is a integer feasible solution, yi ∈ {0, 1}, to these set of constraints, then
the given SvSP(G, l,P, k) instance has a solution of value D.

The integrality constraints on the variables can be relaxed to obtain a lin-
ear program. However, this LP has an unbounded integrality gap. Let G be a
complete graph on n vertices each edge of which has length 1. We associate a
client with every pair of vertices vi, vj ∈ V and let the edge (vi, vj) be the path
corresponding to this client. From our choice of client paths, it follows that the
optimum solution to this instance is 0 iff there is a vertex cover of size k.

Let k = n/2 and F = V . Since any choice of n/2 vertices does not cover all
edges of the complete graph, the optimum solution has value 1. However, the
LP is feasible for D = 0, since we can assign yi = 1/2, i ∈ [n].

3.2 The Graph is a Tree

For this section we assume that G is a tree, T . Then the path Pj for client j is
the unique path in T between sj , tj .

Claim. If we are only allowed to open service stations at a subset of vertices
(F ⊂ V) then the problem SvSP() is NP-hard even on a tree.

Proof. Let H = (V ′, E′) be an undirected graph and consider the problem of
determining if H has a vertex cover of size k. Let T be a one-level tree with
root r and let the leaves of T correspond to vertices in V ′; let φ(v) be the
leaf corresponding to vertex v ∈ V ′. For each edge e = (u, v) ∈ E′ we add a
client whose source/destination are the leaves φ(u), φ(v). Let k be the number
of facilities we wish to open and let all vertices in T other than r be in F .

If H has a vertex cover S of size k, then opening service stations at the
leaves φ(v), v ∈ S, yields a solution in which there is a station on every client-
path and hence OPT = 0. Conversely, a solution in which no client needs a
detour corresponds to a vertex cover in H. Thus a polynomial time algorithm
for SvSP(T, l,P, k) implies a polynomial time algorithm for vertex cover.

6 R. Dabas et al.

Hence for the rest of this section, we assume that F = V . Let D be our guess
on the optimum value. We root the tree T at an arbitrary vertex, say r. For
client j, let rj be the least common ancestor (LCA) of sj , tj in T . Let j∗ be such
that rj∗ is furthest from the root; add j∗ to S. Let fj∗ be the ancestor of rj∗

closest to the root but within distance D of rj∗ . We open a facility at fj∗ thus
covering all clients which are within distance D of fj∗ . The clients whose paths
are covered are removed from C and the process is repeated until all clients are
covered. Note that the number of facilities opened by the algorithm is |S|.

Algorithm 1: Locating service stations on trees
Input : (T, l, P, k, D)
Output: Set F ′ of open service stations

1 S ← φ , F ′ ← φ , P ′ ← P
2 Let rj = LCA(sj , tj) ∀j ∈ P
3 while P ′ not empty do
4 Let j∗ ∈ P ′ be such that rj∗ is furthest from root
5 Let fj∗ ∈ F be the ancestor of rj∗ closest to r within distance D of rj∗

6 S ← S ∪ {j∗}, F ′ ← F ′ ∪ {fj∗}, P ′ ← P ′ \ {Clients covered by fj∗}
7 end
8 return F ′

Lemma 1. If D = OPT then the Algorithm 1 opens at most k facilities.

Proof. Let j1, j2 ∈ S and suppose j1 was added to S before j2. We show that
there is no vertex vi ∈ F such that d(i, j1) ≤ D and d(i, j2) ≤ D. For contradic-
tion, assume that there exist some such vertex vi.

Fig. 1. Proof of Lemma 1.

First observe that vi is a descendant of fj1 since otherwise d(i, j1) > D (see
Fig. 1). We next argue that rj2 is a descendant of fj1 . If this is not the case then
the distance of path Pj2 from vi is at least as large as its distance from fj1 . This

Locating Service and Charging Stations 7

implies that distance of Pj2 from fj1 is at most D which in turn implies that
client j2 is removed from the instance when j1 is added to S.

Thus both rj1 , rj2 are descendants of fj1 . Since j1 was added before j2 to S
the distance of rj2 from fj1 is at most the distance of rj1 from fj1 which is at
most D. This implies that j2 would have been removed when j1 was added to S
yielding a contradiction.

Thus no vertex in T can cover more than one client of S. Hence any solution
needs at least |S| facilities to cover all clients within distance D. If the optimum
solution opens k facilities and has value D then |S| ≤ k which implies that the
number of facilities opened by our algorithm is at most k.

Theorem 1. The problem SvSP(T, l,P, k) can be solved in polynomial time
when T is a tree and F = V .

Proof. Since OPT is the distance between two vertices in T , we can run Algo-
rithm 1 for O(n2) choices of D. The optimum is the smallest value of D for
which the algorithm opens at most k service stations.

3.3 General Graphs

We next consider the case when G is an arbitrary graph. Recall that we wish to
open k facilities at vertices in F ⊆ V , so as to minimize the maximum distance
of any client-path Pj , j ∈ [m] from its nearest open facility.

Theorem 2. There is a polynomial-time algorithm that computes a solution to
the problem SvSP(G, l,P, k) of cost at most 3OPT + L where L is the length of
the longest path in Pand OPT, is the cost of the optimum solution.

Proof. Let l(Pj) be the total length of edges on the path Pj ; then L =
maxPj∈P l(Pj). We follow the 3-approximation algorithm for k-supplier [11] and
first guess the optimum value, say D. Define the distance between two paths
Pi, Pj as the minimum distance between two vertices one of which is on Pi and
the other on Pj .

Pick an arbitrary client-path, say Pj , and open a facility at a vertex vj ∈ F
which is closest to Pj . Add j to S and remove all client-paths which are within
distance 2D of Pj . Continue this process until no client paths remain.

Lemma 2. If D = OPT then the above algorithm picks at most k facilities.

Proof. Note that the algorithm opens |S| facilities. Since the distance between
Pi, Pj , i, j ∈ S is more than 2D, there is no vertex v ∈ F which is within distance
D from both Pi and Pj . Thus any solution which covers the paths Pi, i ∈ S within
distance D needs to open at least |S| facilities. If the optimum solution, which
opens k facilities, has value D then |S| ≤ k.

We now argue that every path is within distance 3OPT+L of an open facility.
Suppose Pi was removed in the step when path Pj was picked and a facility
opened at vj . Since distance between Pi, Pj is at most 2OPT, distance between

8 R. Dabas et al.

Pj and vj is at most OPT and the length of Pj is at most L, by triangle inequality
it follows that the distance between Pi and vj is at most 3OPT + L.

We next show that our result is best possible unless P=NP.

Theorem 3. Any polynomial time algorithm for SvSP(G, l,P, k) which returns
a solution of value αOPT + β would have α ≥ 3 and β ≥ L unless P=NP.

Proof. Let H = (V,E) be an undirected graph. We construct an instance of
SvSP(), by choosing G = H and assigning every edge in E a length L. Every
pair of adjacent vertices u, v, in G is the source-destination for a client, and
the path corresponding to this client is the edge (u, v). Let k be the size of the
minimum vertex cover in H.

The vertices in G corresponding to a vertex cover in H cover all client-paths
within distance 0 and a solution which does not correspond to a vertex cover in
H has value at least L. Thus an algorithm which returns a solution of value at
most αOPT + β, β < L must return a minimum vertex cover in H.

To argue that α ≥ 3, we consider an instance of k-supplier problem which is
specified by a metric d : V × V → R

+ and the set of facility locations, F ⊆ V .
Recall that the k-supplier problem is to open k facilities on vertices in F such
that the maximum distance of any client (a point in C = V \F) from the nearest
open facility is minimised. [11] show that a 3− ε approximation for this problem
is NP-hard.

We construct an instance of SvSP() as follows.

1. For every v ∈ C we include vertices v1, v2 in G. Let V 1 = ∪u∈Cu1 and
V 2 = ∪u∈Cu2. We also include a vertex in G for each v ∈ F and let F be this
set of vertices.

2. For pairs u, v1 and u, v2, u ∈ F we include edges (u, v1), (u, v2) in G of length
d(u, v).

3. For every pair v1, v2 we include an edge v1, v2 in G of length 0. These vertices
are also the source-destination for a client and the corresponding client-path
is the edge (v1, v2). Thus, L = 0.

4. F is the set of vertices in G where we can open at most k service stations.

There is a one-to-one correspondence between solutions for the k-supplier prob-
lem and solutions to the SvSP() instance constructed above and the correspond-
ing solutions have the same value. Consider a polynomial time algorithm which
gives a solution of value at most αOPT + β, α = 3 − ε, ε > 0 for the SvSP()
instance constructed. Since OPT can be scaled by scaling the metric d, the addi-
tive term β in the approximation guarantee can be made negligible compared to
the term αOPT. Thus this algorithm yields a 3−ε approximation to the k-supplier
problem which is not possible unless P=NP

4 Locating Charging Stations for Given
Source-Destination Pairs

We next consider the setting of electric vehicles (EVs) which can only travel
a certain distance, say B, on a full charge. In this section, we consider the

Locating Service and Charging Stations 9

variant where we are given only the source and destination for each client
(ChSD(G, l, C,B)). We wish to find the smallest number of charging stations
such that each client has a feasible path.

4.1 The Graph is a Tree

We first consider the case when G is a tree T = (V,E). If charging stations can
only be located on a subset of vertices, the proof of Claim 3.2 can be modified
as follows to show that the problem is NP-hard. We subdivide every edge of the
tree considered in Claim 3.2 into two edges; the edge incident to the root has
length 0 while the edge incident to the leaf has length B. It is easy to see that
a vertex cover in H corresponds to a solution to the ChSD() problem in this
instance.

We therefore assume in this section that F = V ; thus charging stations can
be located at any vertex of the tree. We build on the Algorithm 1 to obtain a
polynomial-time algorithm for minimizing the number of charging stations for
this setting.

Structure of Feasible Paths. For a client j, let rj be the least common
ancestor of sj , tj and let Tj be the subtree rooted at rj . Let o1, o2, . . . ok be the
facility locations in an optimum solution, O, in order of decreasing distance from
the root.

Claim. There is a feasible path from sj to tj with respect to facilities in O, that
uses at most one facility which is not in Tj .

Proof. Let P be a minimal feasible path from sj to tj with respect to facilities
in O and let oa, ob, a 	= b be the first and last facilities on P that are not
in Tj . Let oc, od be facilities on P that precede and succeed oa and ob. Then
l(oc, oa) ≤ B and l(ob, od) ≤ B. Suppose l(oa, rj) ≤ l(ob, rj). Since l(ob, od) =
l(ob, rj) + l(rj , od), it follows that l(oa, od) = l(oa, rj) + l(rj , od) ≤ l(ob, od) ≤ B
which implies that path P needs only visit vertex oa outside Tj .

If l(oa, rj) > l(oc, rj) then l(oa, rj)+ l(rj , od) > l(oc, rj)+ l(rj , od) > B which
is a contradiction. Thus l(oa, rj) ≤ l(oc, rj) and similarly l(oa, rj) ≤ l(od, rj).
This implies that oa is closer to the root than both oc, od.

Let P be a minimal feasible path and oi1 , oi2 , . . . , oia be the facilities in order
on the part of P from sj to rj .

Claim. i1 < i2 < · · · < ia

Proof. We prove this by contradiction. Let b be the smallest index such that
ib > ib+1. Then l(r, oib−1) > l(r, oib) and l(r, oib+1) > l(r, oib). Let u1 be the least
common ancestor of oib−1 , oib and u2 the least common ancestor of oib+1 , oib .
Note that l(oib−1 , oib) ≤ B and l(oib+1 , oib) ≤ B. We consider 3 cases:

1. u2 is on the path from u1 to oib−1 : Then u2 is identical to u1 and we view
this as if u2 is on the path from u1 to r.

10 R. Dabas et al.

2. u2 is on the path from u1 to oib : Then l(u1, oib) > l(u1, oib+1) which implies
that l(oib−1 , oib+1) ≤ B.

3. u2 is on the path from u1 to r: Then l(u2, oib) > l(u1, oib−1) which implies
that l(oib−1 , oib+1) ≤ B.

Since in all cases we have argued that l(oib−1 , oib+1) ≤ B, path P can skip vertex
oib while remaining feasible. Hence it is not minimal yielding a contradiction.

One can similarly argue that as we traverse P from tj to rj we encounter facilities
in decreasing order of their distance from the root. Thus, the distance from the
root of the facilities encountered in any minimal feasible path, P , from sj to tj
is a monotonically decreasing sequence followed by a monotonically increasing
sequence. The facility on P which is closest to the root is the only facility that
may not belong to Tj .

The Algorithm. The structure of feasible paths suggests the following greedy
algorithm for determining the minimum number of facilities we need to open.
Once again, we root T at an arbitrary vertex r. As before we would be removing
clients as the algorithm progresses. Let C ′ be the set of clients which have not
yet been removed and let Z ′ = ∪j∈C′{sj , tj} be the corresponding set of terminal
vertices. Note that initially C ′ = C and Z ′ = Z. For each vertex, vi ∈ Z ′, let
ai be the ancestor closest to the root and at most distance B away from vi. Let
X = {ai : vi ∈ Z ′} and x ∈ X be the vertex furthest from the root. Open a
facility at x.

We now move sources/destinations of some clients to x. If both sj , tj are
within distance B of x for some client j ∈ C ′ then we remove j from C ′. If x is
in Tj and is within distance B of sj (resp. tj) then we move sj (resp. tj) to x.
The algorithm continues until C ′ is empty. Algorithm 2 gives the algorithm as
a pseudo-code.

The Analysis. Note that the source/destination of clients get closer to the root
as the algorithm proceeds. If client j is alive (has not been removed) at some step
of the algorithm then sj , tj denotes its location at that step. By our procedure
for moving clients it follows that sj , tj will always remain in the subtree Tj . Let
ŝj , t̂j denote the source and destination of client j at the start of the algorithm.
We begin with an observation about Algorithm 2.

Lemma 3. When a facility is opened at vertex x, clients in C ′ which have

1. either their source or destination (but not both) in the subtree rooted at x will
have that endpoint moved to x.

2. both their source and destination in the subtree rooted at x will be removed
from C ′.

Proof. Consider a client j such that sj is in the subtree rooted at x and tj is
not in the subtree rooted at x. This implies x ∈ Tj . Since x is an ancestor of
sj it is closer to the root than sj . x must be within distance B of sj or else we

Locating Service and Charging Stations 11

Algorithm 2: Locating Charging Stations for source-destination pairs on
trees
Input : (T, l, C, B)
Output: Set F ′ of opened charging stations

1 F ′ ← φ , C′ ← C, Z′ ← Z
2 while C′ not empty do
3 Z′ ← ∪j∈C′{sj , tj}
4 ∀vi ∈ Z′, let ai be the ancestor closest to r within distance B of vi
5 X ← {ai : vi ∈ Z′}. Let x ∈ X be furthest from r
6 F ′ ← F ′ ∪ {x}
7 for j ∈ C′ do
8 Let rj be the LCA of sj , tj
9 if(l(sj , x) ≤ B and l(x, tj) ≤ B) then C′ ← C′ \ {j}; continue

10 if(l(sj , x) ≤ B and x is a descendent of rj) then move sj to x
11 if(l(tj , x) ≤ B and x is a descendent of rj) then move tj to x

12 end

13 end
14 return F ′

would have picked a different facility location. Hence we would move sj to x at
this step. A similar argument can be made when tj is in the subtree rooted at
X and sj is not.

Now consider a client j such that sj , tj are in the subtree rooted at x. Again
x is within distance B of both sj , tj and hence we would remove j from C ′.

Theorem 4. The problem ChSD(T, l, C,B) can be solved in polynomial time
when T is a tree and F = V .

Proof. Suppose our algorithm opens p facilities and at step i, it opens a facility
at location xi. The algorithm only moves terminals closer to the root and this
allows us to claim that l(r, xi) ≥ l(r, xi+1). Let i be the first index where the
2 sequences x1, x2, . . . xp and o1, o2, . . . ok differ. Let T ′ be the subtree rooted
at xi and let Q = {y1, y2, . . . yq} be the facility locations (other than xi) of our
algorithm in T ′. Since Q ⊆ {x1, x2 . . . xi−1} the optimum solution opens facilities
at exactly these locations in T ′.

At step i of our algorithm there was a client j such that xi was the vertex
closest to the root and within distance B of sj (or tj , we assume sj). We now
argue that if the optimum solution does not open a facility at another location
(besides the set Q) in T ′ then it has no feasible path for client j.

We first argue that ŝj is as close to xi as it can possibly be at step i.

Lemma 4. Let ys ∈ Q be the facility in T ′, closest to xi, to which there is a
feasible path from ŝj using facilities of Q. At step i, sj is at facility ys.

Proof. Let P be the sequence of facilities (from Q) on a feasible path from ŝj

to ys and P ′ be the sequence of facilities (from Q) on the path followed by sj

12 R. Dabas et al.

in our algorithm. We claim that P is a subsequence of P ′. For contradiction
assume this is not the case and let ya be the first location on P that is not on
P ′. Let yb be the location preceding ya on P ; note that yb is also on P ′. Let
z1, z2, . . . be the facilities on P ′ in Q following yb. The facts that l(ya, yb) ≤ B
and l(yb, z1) ≤ B and that z1, ya is closer to the root than yb let us conclude
that l(z1, ya) ≤ B. This in turn lets us conclude that l(z2, ya) ≤ B and we can
continue with locations on P ′ arguing that they are within distance B of ya.
Hence when ya was opened then sj would have been moved to that location by
our algorithm which implies ya is on P ′.

Since P is a subsequence of P ′, sj can only be closer to rj than ys. However
since P ′ is also a feasible path from sj that only uses facilities in Q, P ′ should
also end at ys.

We are now ready to complete the proof by considering the two cases when
rj is in T ′ and when it is not.

We first consider the case when rj is in T ′. This implies that sj , tj are in T ′

and suppose they are at locations ys, yt ∈ Q at step i.

1. If l(ys, yt) ≤ B we would have dropped client j and it would not be in C ′ at
step i. Hence l(ys, yt) > B.

2. By our algorithm it follows that ys, yt are in Tj at step i.
3. By Lemma 4, there is no feasible path that using only facilities of Q brings

sj (resp tj) any closer to xi - and hence to rj - than ys (resp. yt). Hence any
feasible path for client j must use a facility, say z, not in Tj .

4. z has to be within distance B of both ys, yt and should be closer to the root
than either of ys, yt. From our definition of ys, yt it follows that such a facility
does not belong to Q.

5. z therefore has to lie outside T ′. From our choice of xi it follows that vertices
not in T ′ are at distance greater than B from sj (=ys).

We thus arrive at a contradiction.
Now consider the case when rj 	∈ T ′.

1. By Lemma 4, there is no feasible path that using only facilities of Q brings
sj any closer to xi than ys.

2. The facility, say z following ys on a feasible path should be within distance
B of ys and closer to the root than ys. From our definition of ys, it follows
that such a facility does not belong to Q.

3. z therefore has to lie outside T ′. From our choice of xi, it follows that vertices
not in T ′ are at a distance greater than B from sj (=ys).

We thus arrive at another contradiction.
Hence we conclude that the optimum solution opens at least one other loca-

tion in T ′ besides the locations in Q; let this be location z. We now claim that
picking xi instead of z does not make the optimum solution infeasible. From our
proof of Lemma 3 it follows that this modified solution would have a feasible
path for clients j where rj ∈ T ′. For clients, j for which only one of sj , tj is in T ′

(say sj) the modified solution (by the proof of Lemma 3) would have a feasible

Locating Service and Charging Stations 13

path from ŝj to xi which is only better than having a feasible path from ŝj to a
descendant of xi as provided by the original optimum solution.

In this manner, we can modify the optimum solution so that it corresponds
exactly to the solution we picked. Hence the solution picked by our algorithm is
optimum.

4.2 General Graphs

For arbitrary graphs, the problem of minimizing the number of charging stations
is NP-hard even when F = V . It is no loss of generality to assume that the set
of facility locations F and the set of terminals Z are disjoint. If such is not the
case and v ∈ F ∩ Z we introduce a new vertex v′ and edge (v, v′) of length 0.
Vertex v is included in F and v′ in Z. Construct a graph H = (F ∪Z,E′) where
(u, v) ∈ E′ iff the length of the shortest path between u, v ∈ F ∪Z (under length
function l) is at most B and both u, v are not in Z. We associate a weight 1 with
nodes in F and 0 with nodes in Z.

A set of locations, X ⊆ F , is feasible if for every client j there is a path from
sj to tj in H which only uses vertices of X. Finding a feasible set of minimum
cardinality is exactly the same as finding a minimum weight full Steiner forest
in the auxiliary graph H constructed above. Recall that a Steiner tree/forest
is full if all terminals are the leaves of the tree/forest. The requirement that
the Steiner forest is full arises since the path between a source-destination pair,
sj , tj , cannot use any terminals other than sj , tj .

The problem of finding a minimum weight full Steiner tree for edge-weighted
graphs was shown to be equivalent [3] to finding a minimum weight group Steiner
tree. The group Steiner tree cannot be approximated better than Ω(log2 k) [10]
and an O(log2 n log k) [8] approximation is known; here k is the number of groups
and n the number of vertices. The equivalence between full Steiner trees and
group Steiner trees extends to the scenario when nodes have weights and also
to Steiner forests. However, no non-trivial polynomial-time approximation algo-
rithm is known for group Steiner tree/forest with node weights and the only
result known is an online randomized algorithm that is polylog competitive [19]
but runs in quasi-polynomial time.

Theorem 5. For any fixed ε > 0, the ChSD(G, l, C,B) problem admits no effi-
cient log2−ε |C| unless NP has quasi-polynomial LasVegas algorithms.

To get around this difficulty we assume vehicles have a range of 2B and
compare our solution to the optimum solution for vehicles with a range of B.

Theorem 6. There is a polynomial time algorithm that computes a solution to
the problem ChSD(G, l, C, 2B) of size at most O(log m) · OPT where OPT is the
size of the optimum solution to the problem ChSD(G, l, C,B) and m = |C| is the
number of clients.

Proof. We begin by finding a minimum (node) weight Steiner forest, F ′ which
is an O(log |Z|) approximation to the optimum [14]. Note that there is a path

14 R. Dabas et al.

between every source-destination pair in F ′, although this path may contain a
terminal node.

Consider a tree T in F ′ which has internal nodes which are terminals. Root
T at an arbitrary leaf. Let t ∈ Z be an internal node of this tree with parent u0

and children u1, u2, . . . up. Since H does not have an edge between two terminals
none of the vertices in {u0, u1, . . . , up} are terminals. For 1 ≤ i ≤ p replace edge
(t, ui) in T with the edge (u0, ui). We do this for all those internal nodes in T
which are terminals to obtain a full tree and then repeat the process for all trees
in F ′.

Note that the edges we introduce in the above procedure correspond to paths
of length 2 in H. Hence these edges can be traversed by a vehicle with a range
of 2B without running out of charge. This then yields the theorem.

We now consider a further relaxation and give a pseudo-approximation algo-
rithm which opens at most 8OPT charging stations where OPT is the number of
charging stations needed when the range of the vehicles is one-quarter the range
of the vehicles used in our solution. Note that these analysis are in the nature
of “resource augmentation” that is a common approach for analysing online
scheduling algorithms [13].

Theorem 7. There is a polynomial-time algorithm that computes a solution to
the problem ChSD(G, l, C, 4B) of size at most 8OPT where OPT is the size of the
optimum solution to the problem ChSD(G, l, C,B).

Proof. Let O ⊆ F be the vertices in an optimum solution. Note that every vertex
of Z is adjacent to a vertex of O in H. Assume every edge of H has length 1.
Viewing the vertices of Z as clients and those of F as suppliers, we conclude that
there exist |O| suppliers who can service all clients within distance 1. Hochbaum
and Shmoys [11] gave an algorithm to find k suppliers who can service all clients
within distance 3. We use their algorithm below to pick such a subset X ⊆ F .

1. Pick a vertex v ∈ F , adjacent to a vertex in Z, and include it in X.
2. Let N(v) ⊆ F be vertices which are within distance 2 of v. Remove N(v)∪{v}

from F . Remove all vertices in Z adjacent to N(v) ∪ {v}.
3. Repeat above steps until Z = φ.

Claim. ([11]). |X| ≤ |O| and every vertex of Z has a path of length at most 3
(in H) to a vertex in X.

We now construct an instance of the (edge-weighted) Steiner forest problem
on a graph H ′ = (F,E′). E′ has an edge (u, v), u, v ∈ F if there is a path of
length at most 4 between u and v in H. Suppose there is a path of length at
most 3 from sj to x1 ∈ X and from tj to x2 ∈ X. We designate (x1, x2) the
source-destination pair for client j.

Since O is a feasible solution to ChSD(G, l, C,B) for every (sj , tj) ∈ C there
exists a path sj , v1, v2, . . . vp, tj all of whose edges are in H and v1, v2, . . . , vp ∈ O.
If x1, x2 are the source-destination for client j in the Steiner forest instance we
constructed above then note that there is a path of length at most 4 in H

Locating Service and Charging Stations 15

between x1, v1 and x2, vp. Thus all edges of the path x1, v1, . . . vp, x2 are in H ′

and this implies that there is a solution to our Steiner forest problem in H ′

containing at most |X| + |O| edges. We compute a Steiner forest containing at
most 2(|X| + |O|) edges using the 2-approximation algorithm of Goemans and
Williamson [9]. Since the number of nodes in a tree is at most twice the number
of edges, this forest contains at most 4(|X| + |O|) ≤ 8 |O| vertices and these are
the locations of the charging stations for our solution.

5 Locating Charging Stations When Routes are Specified

We next consider the variant of the Charging Station location problem when we
are given a path, Pj for each client j, and have to locate charging stations such
that each client can travel from its source to destination without deviating from
its path and running out of charge. Our objective is to minimize the number of
Charging Stations.

5.1 The Graph is a Tree

For this section we assume that G is a tree T = (V,E). Then the path Pj

for client j is the unique path in T between sj , tj . Our reduction in the proof
of Claim 3.2 and its subsequent modification in Sect. 4.1 is an approximation
preserving reduction from vertex cover in graphs to the ChSP() problem on
trees when we are allowed to open charging stations only at a subset of vertices,
F ⊆ V .

We, therefore, assume that F = V and modify Algorithm 2 to minimize the
number of facilities needed in this setting.

Theorem 8. The problem ChSP(T, l,P, B) can be solved in polynomial time
when T is a tree and F = V .

Proof. As before we root the tree at an arbitrary vertex, r and shall be moving
terminals up the tree. The movement of terminals sj , tj is such that they always
remain on the path Pj and we remove client j when sj , tj are within B distance
of each other. Let P ′ be the set of clients which have not yet been removed and
Z ′ = ∪j∈C′{sj , tj} be the corresponding set of terminal vertices.

For a client j, let rj be the least common ancestor of sj , tj and Tj the subtree
rooted at rj . Let aj ∈ F (resp. bj ∈ F) be the furthest ancestor of sj (resp.
tj) which is at most distance B away from it and contained in Tj . Let X =
∪j∈C′{aj , bj} and x ∈ X be the vertex furthest from the root r. We open a
facility at location x.

Our procedure for moving terminals is now different from Algorithm 2. We
move sj (resp. tj) to x if x is on the path Pj and within distance B of sj (resp.
tj). Client j is removed from C ′ if sj , tj are within distance B of each other.

Let xi be the facility opened in step i of the algorithm. Once again it is
easy to see that l(r, xi) ≥ l(r, xi+1). Let o1, o2, . . . , ok be facility locations of the
optimum solution, O, ordered by decreasing distance from the root. Let i be the

16 R. Dabas et al.

earliest index at which the sequence of facilities in O differs from x1, x2, . . . xp.
Let T ′ be the subtree rooted at xi and Q = {y1, y2, . . . , yq} be the set of facility
locations opened in T ′ by our algorithm. Note that the optimum solution also
opens facilities at all locations in Q. Once again we will argue that the optimum
solution opens a facility in T ′ that is not in Q.

Suppose xi = aj , j ∈ P. We first consider the case when xi = rj . This implies
T ′ = Tj . At step i, sj , tj were more than B distance apart. Thus any feasible
solution would include a facility on the path Pj between sj and tj . This implies
the optimum solution would have another facility in T ′ besides the facilities in
Q.

We now assume xi 	= rj . Note that rj cannot be in the subtree T ′ since aj

is never an ancestor of rj . Hence we only need to consider the case when xi is
in Tj . Suppose at step i, terminal sj is at location ys. This implies any feasible
path for client j that starts at ŝj and uses only locations in Q cannot reach any
closer to rj than ys. Note that xi is the furthest ancestor of ys which is within
distance B. If the optimum solution does not open another facility in T ′ there
would be no feasible path from ŝj to rj .

Thus we have established that the optimum solution should have another
facility in T ′ besides the facilities in Q. As before one can argue that location
xi dominates any other choice of location in T ′ and hence we can modify the
optimum solution so that it includes xi. Continuing in this manner we will obtain
an optimum solution identical to the solution obtained by our algorithm which
implies that our algorithm computes an optimum solution.

5.2 General Graphs

Finding a minimum collection of charging stations that ensures every path in P is
feasible is equivalent to finding a set of vertices X ⊆ F which hits every subpath
of the given paths of length at least B. Funke et al. [6] use this observation and
an approximation algorithm for the hitting set problem to obtain an O(log n)
approximation for ChSP(G, l,P, B).

We show this approximation is best possible by providing an approximation
preserving reduction from the set cover problem to this charging station location
problem.

Theorem 9. Let OPT be the size of an optimum solution to the problem
ChSP(G, l,P, B). There is no polynomial time algorithm which finds a solution
of size o

(
log n

α OPT
)

for the problem ChSP(G, l,P, αB) unless P=NP. In particular
(for α = 1), there is no polynomial time algorithm which finds a solution of size
o(OPT log n) for the problem ChSP(G, l,P, B) unless P=NP.

Proof. Given an instance of the set cover problem with elements e1, e2, . . . , en

and sets S1, S2, . . . , Sm we create a graph G = (V,E) as follows.

1. For every set Si in the set cover instance add vertex vi to V ; vi is also included
in F .

Locating Service and Charging Stations 17

2. For element ej in the set cover instance add vertices v1
j , v2

j , . . . , vq+1
j to V

where q is the number of sets containing ej . Also add vertices sj , tj which are
source and destination for a client j. Note that sj , tj will be included in V .

3. For client j add zero length edges (vi
j , v

i+1
j), 1 ≤ i ≤ q − 1 and

edges (sj , v
1
j) and (vq+1

j , tj) of length B. The path for client j is Pj =
(sj , v

1
j , v2

j , . . . , vq+1
j , tj).

4. Order the sets including element ej arbitrarily. If Si is the pth set containing
ej then replace edge (vp

j , vp+1
j) with edges (vp

j , vi), (vi, v
p+1
j) and both these

edges have length 0. Thus the path Pj corresponding to element ej has 2q +2
edges and a total length 2B.

Consider a set cover of size k and pick vertices corresponding to these sets as
locations for charging stations. Since all elements are covered by these sets, every
path Pj visits one of the charging stations which implies that the set of charging
stations picked is feasible.

Conversely, consider a feasible set of charging stations in G. Since these
can only be located on vertices in F this corresponds to picking a collection
of sets. Every path Pj has length 2B and must visit a charging station. Hence
the collection of sets covers all elements and forms a set cover. The hardness of
approximating set cover [4,5] better than c log n implies a similar hardness on
approximating the minimum number of charging stations.

If vehicles have range αB we make α copies of graph G. Let v[i] denote
vertex v in the ith copy. We combine the paths corresponding to element ej in
the various copies of G into one path, Pj , as follows. For 1 ≤ i ≤ α − 1 identify
vertices vq+1

j [i] and sj [i+1] and vertices tj [i] and v1
j [i+1]. Let G′ be the resulting

graph. Note that Pj has (2k + 1)α + 1 edges and total length (α + 1)B (Fig. 2).

Fig. 2. Illustrating the reduction from set cover to ChSP(G, l, P, αB).

Let OPT be the number of sets in a minimum set cover. Picking all α copies
of vertices corresponding to the sets in this minimum set cover yields a solution
to the problem ChSP(G, l,P, B) of size αOPT. Suppose by permitting vehicles
to have range αB we could obtain an o(α−1 log n)-approximation in polynomial
time. We could then use this algorithm to find a set of o(OPT log n) charging

18 R. Dabas et al.

stations which would hit every path Pj in G′. The sets corresponding to these
charging stations cover all elements and form a set cover of size o(OPT log n). This
would imply a o(log n) approximation for set cover in polynomial time which is
not possible unless P=NP.

6 Conclusion

The problem of locating charging stations to build an efficient infrastructure for
supporting EVs is of great relevance. Our paper shows that without assumptions
on the nature of the road network it is not possible to obtain good approximation
algorithms. It would therefore be natural to consider all these problems in the
setting of planar graphs.

The two variants of charging station location that we considered seem to sit
at two extremes. By specifying only source-destination for each client we might
be reducing the number of charging stations needed but this likely comes at the
expense of the clients having to take a long path. On the other hand, when we
specify the path that the clients should follow and open charging stations to
make these paths feasible, we are likely opening a large number of facilities. It
would be interesting to consider the setting when client paths are specified but
the clients may need to take small detours to avoid running out of charge. An
interesting and likely challenging objective in this setting would be to minimize
the maximum total detour that the clients have to make.

While we have been able to obtain exact algorithm on trees for all three
problems considered it seems hard to extend these algorithms to graphs with
bounded treewidth. We believe that even finding a set of k vertices which would
hit a given set of paths (the SvSP(p)roblem with no detours) in a series-parallel
graph is a challenging problem.

References

1. Berman, O., Bertsimas, D., Larson, R.C.: Locating discretionary service facilities,
II: maximizing market size, minimizing inconvenience. Oper. Res. 43(4), 623–632
(1995)

2. Berman, O., Larson, R.C., Fouska, N.: Optimal location of discretionary service
facilities. Transp. Sci. 26(3), 201–211 (1992)

3. Biniaz, A., Maheshwari, A., Smid, M.H.M.: On the hardness of full steiner tree
problems. J. Discrete Algorithms 34, 118–127 (2015)

4. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings of
the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC 2014,
pp. 624–633. Association for Computing Machinery, New York (2014)

5. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

6. Funke, S., Nusser, A., Storandt, S.: Placement of loading stations for electric vehi-
cles: no detours necessary! J. Artif. Intell. Res. 53, 633–658 (2015)

7. Funke, S., Nusser, A., Storandt, S.: Placement of loading stations for electric vehi-
cles: allowing small detours. In: Twenty-Sixth International Conference on Auto-
mated Planning and Scheduling (2016)

Locating Service and Charging Stations 19

8. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for
the group steiner tree problem. J. Algorithms 37(1), 66–84 (2000)

9. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)

10. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proceedings
of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC
2003, pp. 585–594. Association for Computing Machinery, New York (2003)

11. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem.
Math. Oper. Res. 10(2), 180–184 (1985)

12. Hodgson, M.J.: A flow-capturing location-allocation model. Geogr. Anal. 22(3),
270–279 (1990)

13. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM
(JACM) 47(4), 617–643 (2000)

14. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-
weighted steiner trees. J. Algorithms 19, 02 (2000)

15. Kuby, M., Lim, S.: The flow-refueling location problem for alternative-fuel vehicles.
Socioecon. Plann. Sci. 39(2), 125–145 (2005)

16. Kuby, M., Lines, L., Schultz, R., Xie, Z., Kim, J.-G., Lim, S.: Optimization of
hydrogen stations in Florida using the flow-refueling location model. Int. J. Hydro-
gen Energy 34(15), 6045–6064 (2009)

17. Mitra, S., et al.: Trajectory aware macro-cell planning for mobile users. In: 2015
IEEE Conference on Computer Communications (INFOCOM), pp. 792–800. IEEE
(2015)

18. Mitra, S., Saraf, P., Sharma, R., Bhattacharya, A., Ranu, S., Bhandari, H.: Netclus:
a scalable framework for locating top-k sites for placement of trajectory-aware ser-
vices. In: 2017 IEEE 33rd International Conference on Data Engineering (ICDE),
pp. 87–90. IEEE (2017)

19. Naor, J., Panigrahi, D., Singh, M.: Online node-weighted steiner tree and related
problems. In: Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, Palm Springs, CA, USA, 22–25 October 2011,
pp. 210–219. IEEE Computer Society (2011)

20. Storandt, S., Funke, S.: Enabling e-mobility: facility location for battery loading
stations. In: Twenty-Seventh AAAI Conference on Artificial Intelligence (2013)

Graph Burning and Non-uniform
k-centers for Small Treewidth

Matej Lieskovský and Jǐŕı Sgall(B)

Faculty of Mathematics and Physics,
Computer Science Institute of Charles University, Prague, Czechia

{ml,sgall}@iuuk.mff.cuni.cz

Abstract. We study the graph burning problem and give a polynomial-
time approximation scheme (PTAS) for arbitrary graphs of constant
treewidth. This significantly extends the previous results, as a PTAS
was known only for disjoint union of paths.

As a building block, we give an algorithm that proves the non-uniform
k-center problem to be in XP when parameterized by the number of dif-
ferent radii and the treewidth of the graph. This extends the known
exactly solvable cases of the non-uniform k-center problem; in particular
this also solves the k-center with outliers on graphs of small treewidth
exactly.

Keywords: Graph algorithms ¨ Approximation algorithms ¨ PTAS ¨
k-center problem

1 Introduction

We study the problem of graph burning originally introduced in [3]. In this
problem, we are given an undirected graph. In each round, we choose one node
to be set on fire. In addition, in every time step fire spreads to all neighbors of all
previously burning nodes. The objective is to minimize the number of steps to
spread the fire to all the nodes. More precisely, the burning number g of a graph
is defined as the minimum number of time steps needed to achieve the state with
all nodes burning. A 3-approximation algorithm for computing g has been given
in [2], recently a minor improvement to the ratio 3 ´ 2/OPT was given in [10],
but still no (3 ´ ε)-approximation for general graphs is known.

We approach the graph burning problem by restricting the graphs to be
burned. Our main result is a PTAS for graph burning of all graphs of a constant
treewidth, with a slight generalization that allows edge lengths. This result sig-
nificantly improves previous results, as no PTAS was known for graph burning
all tree graphs. Previous results applied only to linear forests (unions of disjoint
paths), where both a PTAS and NP-hardness were known [2,4].

To design the PTAS, we study the non-uniform k-center (NUkC) problem,
which generalizes both the graph burning problem and the classical and well-
studied (uniform) k-center problem.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Chalermsook and B. Laekhanukit (Eds.): WAOA 2022, LNCS 13538, pp. 20–35, 2022.
https://doi.org/10.1007/978-3-031-18367-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18367-6_2&domain=pdf
http://orcid.org/0000-0002-0058-3133
http://orcid.org/0000-0003-3658-4848
https://doi.org/10.1007/978-3-031-18367-6_2

Graph Burning and k-Centers 21

In an instance of the (uniform) k-center problem we are given a set of n
nodes, a metric d defining distances between the nodes, and parameters k and
r that tell us how many centers we are allowed to use and the radius of every
center’s reach, respectively. We must then decide if a set of k nodes can be
selected as centers so that every node will be within distance r of some center.
The k-center decision problem, first formulated in 1964 by Hakimi [11], is known
to be strongly NP-hard.

In the optimization version of the k-center problem, one minimizes r for
a fixed k. Hochbaum and Shmoys [12] gave a 2-approximation algorithm and
proved it to be optimal unless P=NP.

The non-uniform k-center (NUkC) problem is a generalization where different
centers use given, possibly different, radii, see Definition 2.1 below. This problem
was first introduced in [5] although a special case had already been analyzed
in [6].

We can view the (decision variant of the) graph burning problem as a special
case of the NUkC problem for graphs with unit-length edges and parameter g,
where the goal is to cover the graph using g centers, each having a unique integer
radius from 0 to g ´1. The locations of the centers then correspond to the nodes
set on fire in each step, starting from the largest diameter.

To design our PTAS for graph burning, we study the NUkC problem with
a constant number of different radii. We show that the non-uniform k-center
problem is polynomial if both the number of different radii and treewidth are
constant. More precisely, we give an XP-algorithm when the NUkC problem is
parameterized by the number of different radii and treewidth.

To make this algorithm work, we design a concept of “tidy” assignments of
centers to vertices, as our main technical contribution. This allows us to process
the graph and check partial solutions in the ordering given by the tree decom-
position. We then give a recursive—or, equivalently, dynamic programming—
algorithm for the problem. The techniques are fairly standard for graphs of
bounded treewidth and the existence of such an algorithm can be deduced also
from the extension of Courcelle’s theorem in [1].

Nevertheless, this algorithm significantly extends the known exactly solvable
cases of the non-uniform k-center problem. In particular, for the previously stud-
ied problem of the k-center with outliers, which allows us to use a given number
of centers of radii r (the usual centers) and 0 (the outliers), we give an exact
algorithms on graphs of constant treewidth.

Finally, we use this XP algorithm for the NUkC problem to design a PTAS
for burning graphs of a constant treewidth, using a simple reduction.

For the sake of succinctness, all our algorithms below are formulated to
answer the decision variant of the problem; however, they can be modified by
standard dynamic programming techniques to also return a solution if one exists.

Other Related Work. The k-center problem is widely studied also in param-
eterized complexity. Most related to our result, Katsikarelis et al. [15] gives
an XP-algorithm for k-center parameterized by the cliquewidth (and thus also
treewidth) using similar methods and running time as ours. However, our algo-

22 M. Lieskovský and J. Sgall

rithm is able to handle general distances and distinct radii (precisely, the NUkC
problem with constant number of radii). They also show the hardness of the
k-center problem which implies that a better (FPT) running time is not possible
for exact algorithms. Interestingly, to complement this hardness result, they also
give an approximation scheme running in FPT time.

Previous work on FPT algorithms for k-center includes most notably an
exact algorithm for planar graphs by Demaine et al. [8]. Feldmann [9] studied
the hardness of approximation on graphs of small highway dimension, obtaining
a 3/2-approximation in FPT time if parameterized also by k.

New results about FPT algorithms and hardness of exact algorithms for
graph burning, together with an extensive survey of the literature is given in [17].

For the non-uniform k-center problem, there have been recent developments
concerning approximation algorithms. Chakrabarty et al. [5] show that no O(1)-
approximation can exist for NUkC problem if the number of radii is a part of
the input (unless P = NP). The positive results thus focus on a small number
of distinct radii. In [5], authors focus on two radii. The special case known as k-
center with outliers where one of the radii is zero is solved with an approximation
factor of 2, which is optimal unless P = NP. An approximation factor of (1`√

5)
is given otherwise. It has been conjectured that O(1)-approximation exists for
any constant number of radii, and such algorithms were given so far for 3 and 4
radii [13,14].

2 Solving k-center Problem with � Different Radii
on Trees

We first define the NUkC problem formally for general graphs.

The NUkC Problem with � Different Radii. In an instance of this problem we
are given an undirected graph G on n nodes with edge lengths from R

`
0 , a list

of � radii r1, r2, . . . , r� P R
`
0 , and a vector (k1, k2, . . . , k�) where ki P N specifies

how many centers of radius ri we are allowed to use.

Definition 2.1. For a given instance of the NUkC problem the metric d(u, v)
is defined as the length of the shortest path from u to v. We also define K “
V (G) ˆ {1, . . . , �} to be the set of all possible centers and Kv “ {(w, i) P K |
d(v, w) ď ri} to be the set of all centers that will cover node v.

A solution to an instance of the NUkC problem is a subset S Ď K such that
it contains at least one center from each Kv.

The TreeNUkC problem with � different radii is the NUkC problem with
� different radii with instances restricted to graphs G that are trees. In the rest
of this section, we consider only this subproblem. Furthermore, we root the tree
arbitrarily.

Subtrees and Partial Solutions. We shall use Tv to denote the subtree of G with
root v containing v and all its descendants. A partial solution for Tv is any subset
of KX(V (Tv)ˆ{1, . . . , �}); note that we do not require all vertices to be covered.

Graph Burning and k-Centers 23

For a solution S Ď K we define a partial solution Sv “ S X (V (Tv) ˆ {1, . . . , �})
to be its restriction to Tv.

For each partial solution we consider its cost vector, describing the number
of centers used, and its coverage level, describing its quality. Our algorithm
computes recursively for each subtree and cost vector the best solution.

Cost Vectors. The cost vector x of a partial solution is a vector of � natural
numbers x1, x2, . . . , x� where xi is the number of centers with radius ri the partial
solution contains. We can view k1, k2, . . . , k� given by the instance as the target
cost vector. For a given instance, we define k “ ∑

ki and the set of valid cost
vectors as C “ {(y1, y2, . . . , y�) P N

� | (∀i)(yi ď ki)}. Since any instance with at
least n centers is trivial, we assume k < n, which ensures that |C| ď n�.

Coverage Level. We define the coverage level of any partial solution for any given
subtree Tv. A coverage level consists of a sign and a non-negative real number.
A coverage level is `c if the partial solution covers all nodes in Tv and in addition
any nodes outside Tv within distance up to c from the root v (and not more).
A coverage level is ´c if not all nodes in Tv are covered by the partial solution
and c equals the maximal distance from v to a node not covered. We also define
a natural linear ordering on the coverage levels so that ´b ď ´a ď `a ď `b for
all a ď b P R

`
0 . Note that coverage levels thus differ from real numbers by the

existence of both a positive and a negative zero. A coverage level of `0 denotes
that all nodes in Tv are covered while a coverage level of ´0 denotes that the
root v is not covered.

For clarity we shall use α, β, γ to denote coverage levels while a, b, c will be
used to denote the absolute value of the corresponding coverage level.

Table of Configurations. For every subtree we compute a table t which contains
the maximum coverage level achievable for any given cost vector.

Lemma 2.2. For any solution S to an instance of the TreeNUkC problem, if
the corresponding partial solution Sv “ S X (V (Tv) ˆ {1, . . . , �}) for subtree Tv

has a negative coverage level, then all nodes outside of Tv are covered by some
center outside of Tv in solution S.

Proof. For a contradiction, assume that there is a node u outside of Tv that
is covered by some center in Sv. Let ´c be the coverage level of Sv. Since the
coverage level is negative, there exists a node w in Tv with d(v, w) “ c that is not
covered by Sv. We also know that d(v, w) > d(u, v) since otherwise w would be
covered by the same center as u. However, the center outside of Tv that covers
w also covers all nodes within distance c from v and thus also covers u. ��

Combining Partial Solutions. Let us now describe how to compute the table of
configurations for a given (sub)tree. Any partial solution for Tv can be thought
of as consisting of a partial solution for Tw where w is a child of v and a partial
solution for the remaining nodes of the tree, which we shall denote as Tv \Tw. We
define below the function f which defines how coverage levels of the two partial
solutions are combined. The three arguments f takes are the coverage level of

24 M. Lieskovský and J. Sgall

Tv \ Tw, the coverage level of Tw, and the length of the edge v, w respectively.
We divide the cases according to the signs of the coverage levels.

f(`a, `b, d) “ ` max(a, b ´ d)

f(`a, ´b, d) “
{

`a if a ě b ` d

´(b ` d) otherwise

f(´a, `b, d) “
{

´a if a > b ´ d

`(b ´ d) otherwise

f(´a, ´b, d) “ ´ max(a, b ` d)

The following two lemmata verify that the function f has the desired prop-
erties.

Lemma 2.3. Let T be any rooted tree, v be the root of T , w be any child of v
and S be the subtree of T rooted in w. If P is a partial solution for T \ S with
cost vector x and coverage level α and Q is a partial solution for S with cost
vector y and coverage level β, then P Y Q is a partial solution for T with cost
vector x ` y and coverage level f(α, β, d(v, w)).

Proof. If α “ `a and β “ `b, then all nodes in S are covered by the centers of Q
and all nodes in T \S are covered by the centers of P , ensuring that the resulting
coverage level will be positive. Any node outside of T at distance r from v is at
distance r ` d(v, w) from w. Thus the centers of P cover any nodes outside T
within distance a of v and centers of Q cover any nodes outside T within distance
b ´ d(v, w) of v. The resulting coverage level is thus ` max(a, b ´ d(v, w)).

If α “ `a and β “ ´b, the centers in P cover all uncovered nodes in S up to
the distance a ´ d(v, w) from w (or none if negative). If this quantity is smaller
than b, there is an uncovered node in S at distance b ` d(v, w) from v and it is
the most distant uncovered node. Otherwise all nodes in T are covered as well
as all other nodes at distance up to a from v; by Lemma 2.2 centers in S do not
contribute to covering additional nodes outside of T .

If α “ ´a and β “ `b, the centers in Q cover all uncovered nodes in T \ S
up to the distance b ´ d(v, w) from v (or none if negative). If this quantity is
smaller than a, there is an uncovered node in S at distance a from v and it is
the most distant uncovered node. Otherwise all nodes in T are covered as well as
all other nodes at distance up to b ´ d(u, v) from v; similarly as in Lemma 2.2,
centers in T \ S do not contribute to covering additional nodes outside of T .

If α “ ´a and β “ ´b then we consider the node p not covered in P
with d(v, p) “ a and the node q not covered in Q with d(w, q) “ b; note that
d(v, p) “ b ` d(v, w). We claim that among p and q, the one more distant from
v remains uncovered. Should this more distant node be covered by a center in
the other subtree, then that center would cover all the nodes of the same or
smaller distance from v in both subtrees, including the other node among p and
q, which is a contradiction. As all the nodes more distant from v than both p

Graph Burning and k-Centers 25

and q are covered by centers in its subtree, it follows that the coverage level of
T is ´ max(a, b ` d(v, w)). ��
Lemma 2.4. The function f(α, β, d) is non-decreasing with increasing α or β.

Proof. If the value of f is negative, it is equal to min(α, β ´ d), which is non-
decreasing in α and β.

If the value of f is positive, it is equal to max(α, β ´ d), which is non-
decreasing in α and β.

It remains to consider the cases when the value of f may change its sign.
This can only happen when we move from one of the cases or subcases in the
definition of f to another one.

If α or β changes from ´0 to `0, we are either moving from the f(´a, ´b, d)
case which is always negative or we are moving to the f(`a, `b, d) case which
is always positive. Thus we are either moving from negative to positive coverage
level or the sign does not change.

If we are changing subcases in one of the cases where exactly one of α and β
is positive, one can check that the subcase condition is monotone, i.e., increasing
either α or β can only flip the subcases from the negative one to the positive
one. ��

The last two lemmata imply the following.

Corollary 2.5. For any given tree and cost vector, the maximum achievable
coverage level is computable using only the maximum coverage levels achievable
for each subtree and cost vector.

We start a calculation for each node v from a table t0, which represents
the table of configurations for a leaf node. We then combine it with the tables
of configurations of the children of v, computed recursively, using the previous
observations. The algorithm follows.

Lemma 2.6. Function partial solutions(v) computes a correct table t for Tv,
that is, the following conditions hold:
(a) If t[z] “ γ, then there exists a partial solution for Tv with cost vector z and
coverage level γ.
(b) If there exists a partial solution for Tv with cost vector z and coverage level
γ, then t[z] ≥ γ.

Proof. We proceed inductively. As the basis of induction, observe that t0 is the
correct table of configurations for all single-node trees as putting all centers at
the root is a valid solution.

Now for i “ 1, . . . , degree(v), let T ′ be the subtree of Tv consisting of v and
the subtrees Tu for the first i´1 children u of v considered in the loop on line 5;
let w be the i-th child of v. By induction, we assume that told and tch are the
correct tables for T ′ and Tw, respectively. We prove that the table t after the
i-th iteration of the loop on line 5 is correct for the combined subtree T ′ Y Tw.

26 M. Lieskovský and J. Sgall

Algorithm Tree-Coverage Solver for non-uniform k-center on trees
1: function TreeNUkC(tree, r1, r2, . . . , r�, k1, k2, . . . , k�, C)
2: t0[x] ←

{
´0 for x “ 0

maxi|xi>0(ri) for x P C \ {0}
3: function partial solutions(node)
4: t ← t0
5: for child P node.children do
6: tch ← partial solutions(child)
7: told ← t
8: t[x] ← ´∞ for x P C
9: for x P C do
10: for y P C do
11: if (x ` y) P C then
12: γ “ f(told[x], tch[y], d(node, child))
13: t[x ` y] ← max(t[x ` y], γ)

14: return t
15: t “ partial solutions(tree.root)
16: return True if t[k1, k2, . . . , k�] ě `0

(a) For each z P C, the final value of t[z] “ γ is assigned in line 13 for some
x and y with x ` y “ z. By induction, there exist a partial solution P for T ′

with cost vector x and coverage level t[x] and a partial solution Q for Tw with
cost vector y and coverage level t[y]. By Lemma 2.3, P Y Q is a partial solution
for T ′ Y Tw with cost vector x ` y and coverage level f(told[x], tch[y], d(v, w))
which is the value γ assigned in line 13.

(b) Suppose that we have a partial solution R for T ′ YTw; let P be the partial
solution consisting of centers of R in T ′ and Q be the partial solution consisting
of centers of R in Tw. Let x and y be the cost vectors of P and Q; obviously
z “ x ` y. Let α and β be the coverage levels of P and Q. By Lemma 2.3, the
coverage level of R is f(α, β, d(v, w)). By induction, told[x] ≥ α and tch[y] ≥ β.
Now by Lemma 2.4, f(told[x], tch[y], d(v, w)) is at least the coverage level of R.
Since this value is among the values γ considered in line 13 for t[z], the inductive
claim follows. ��
Theorem 2.7. Algorithm Tree-Coverage solves the TreeNUkC problem in
polynomial time, namely with O(n2�`1) arithmetic operations.

Proof. The correctness of the algorithm follows from Lemma 2.6.
For the bound on complexity, note that we compute two auxiliary tables for

each node: one when considered as a child and one when considered as a root
of a subtree. Calculation of each table considers |C|2 “ O(n2�) pairs x,y and a
constant number of arithmetic operations for each of them. ��

Graph Burning and k-Centers 27

3 Generalization to Graphs with Small Treewidth

We shall now demonstrate a generalization of the previous algorithm for trees
to graphs G of small treewidth.

3.1 Tree Decompositions

The concepts of treewidth and tree decompositions are intimately linked, as will
be apparent from the definitions below. Our algorithm shall make use of the
existence of a nice tree decomposition. This is a concept introduced by Kloks
in [16], but we use the variation from Cygan et al. [7], further modified so that
the root is always an empty forget bag.

Definition 3.1. A tree decomposition of a graph G is a tree T where every
vertex x P T is assigned a set Bx Ď V (G), which we shall call a bag, and the
following conditions are satisfied:

– If {u, v} P E(G) then there exists a vertex x P T such that {u, v} Ď Bx.
– For all v P V (G) the subgraph induced by {x P T | v P Bx} is a tree.

The width of a tree decomposition T is the size of the largest bag minus one.
The treewidth of a graph G is the width of the tree decomposition of G with the
minimum width.

Definition 3.2. A nice tree decomposition is a rooted tree of bags that consists
of five different types of bags.

– Leaf bag is empty and has no children.
– Introduce bag adds a new node compared to its only child
– Forget bag removes a node compared to its only child
– Join bag has two children bags with identical contents
– Edge bag is labeled with an edge it introduces and has identical contents to its

child.

The bags of a nice tree decomposition must further satisfy the following:

– There is exactly one forget bag for every node
– For every edge uv in the graph there exists exactly one bag labeled with that

edge
– A bag labeled with edge uv contains both u and v
– The root of the tree of bags is an empty forget bag

Cygan et al. [7] prove the following lemma about constructing a nice tree
decomposition. This also holds for our modification, since to satisfy the addi-
tional requirement that the root is an empty forget bag, we can add in linear
time a sequence of forget bags as predecessors of the original root.

Lemma 3.3. Given a tree decomposition of graph G, a nice tree decomposition
of G with equal width can be found in polynomial time.

28 M. Lieskovský and J. Sgall

3.2 Tidy Assignments

Since bags contain multiple nodes, there is no straightforward way to measure the
quality of a partial solution as we did using the coverage level previously. Instead,
we shall predict which center is going to cover a given node and remember this
information for each possible partial solution for a bag.

Definition 3.4. An assignment (of centers) is a function A : V (G) → K
assigning every node v P V (G) a center from Kv.

Observe that the image of A is a solution with an associated cost vector
(possibly non-valid). We thus extend the idea of cost vectors to assignments. We
say that an assignment A is an assignment of solution S if the image of A is
a subset of S.

We will now focus on assignments where all nodes on any shortest path
from a node to the assigned center are assigned the same center. We call such
assignments tidy. Tidiness of an assignment can be checked edge by edge and
also guarantees that each center is used for the node where it is located. These
two properties together allow us to fomulate our recursive algorithm and account
for the number of used centers correctly.

For the following definition and subsequent observations, we abuse notation
so that distance or path to A(u) denotes the distance or path to the node where
the center is located, i.e., to the first component of A(u). Thus, if A(u) “ (w, i),
then d(u,A(u)) denotes d(u,w) and a path to A(u) means a path to w.

Definition 3.5. For a given assignment A and an edge uv P E(G), we say that
A is uv-tidy if either of the following holds:

– A(u) “ A(v)
– d(u,A(u)) < d(u, v) ` d(v,A(u)) and d(v,A(v)) < d(v, u) ` d(u,A(v))

Furthermore, an assignment is tidy, if it is uv-tidy for every edge uv P E(G).

Lemma 3.6. Let A be a tidy assignment. Then any node v on a shortest path
from u to A(u) has A(v) “ A(u). In particular, if the assignment uses some
center (v, i), then A(v) “ (v, i).

Proof. We prove the claim for v adjacent to u on a shortest path from u to
A(u), the lemma then follows inductively. Indeed, if v is on the shortest path
then d(u,A(u)) “ d(u, v) ` d(v,A(u)). Since uv is an edge and the assignment
is tidy, the first condition in the definition has to hold, thus A(v) “ A(u). ��

Now we show that we can restrict considered solutions to tidy assignments.
A greedy assignment of a solution to the NUkC problem is constructed as

follows: Let us select an arbitrary linear order � on the centers of the solution.
For every node v of the graph and every center (w, i) used by the solution we
compute the excess coverage x(v, (w, i)) “ ri ´ d(v, w). The greedy assignment
then assigns to v the center which maximizes the excess coverage. If multiple
centers have equal excess coverage we select the minimal one of those in �. Note
that at least one greedy assignment exists for any solution.

Graph Burning and k-Centers 29

Lemma 3.7. Every greedy assignment is a tidy assignment.

Proof. Suppose that a greedy assignment A is not uv-tidy for an edge uv. Thus
A(u) �“ A(v) and, w.l.o.g., d(u,A(u)) “ d(u, v) ` d(v,A(u)), swapping u and
v if needed. Observe that x(u,A(u)) “ x(v,A(u)) ´ d(u, v) and x(u,A(v)) ě
x(v,A(v)) ´ d(u, v). Consider why v was assigned A(v) instead of A(u). If
x(v,A(v)) > x(v,A(u)), then x(u,A(v)) > x(u,A(u)). If x(v,A(v)) “ x(v,A(u))
and A(v) � A(u) then x(u,A(v)) ě x(u,A(u)) and A(v) � A(u). In either case
u would not be assigned A(u) during the construction of a greedy assignment.

��
Corollary 3.8. For every inclusion-wise minimal solution S there exists a tidy
assignment with image equal to S.

3.3 The Algorithm

We conceptualize the algorithm as deciding the existence of a tidy assignment
with a valid cost vector. Since the number of tidy assignments can be exponential,
we will once again proceed via dynamic programming. We process T from the
leaves towards the root, computing partial results for every bag.

Subgraphs. Let us define GB as the subgraph of G consisting of the nodes and
edges introduced by bags in the subtree of T rooted in B. Note that if B is the
root of T, GB is equal to the entire graph G.

Forgotten Nodes. We define FB “ V (GB)\B. This is the set of forgotten nodes
for bag B, which are the nodes forgotten by bags in the subtree of T rooted in
B. Observe that any edge incident with a node in FB is in E(GB). Also note
that the set of forgotten nodes for the root bag is the set of all nodes.

Subtree Assignment. The subtree assignment (of centers) for a bag B is a
function Atree : V (GB) → K. Note that the range of a subtree assignment is not
restricted to centers located in GB . We say that a subtree assignment Atree for
bag B is B-tidy if and only if it is uv-tidy for all edges uv P E(GB).

Cost Vectors. We extend the notion of cost vectors to subtree assignments. For
any subtree assignment Atree for bag B, its cost vector is the number of centers
of each type in the intersection of FB ˆ {1, . . . , �} and the image of Atree. Note
that we count only the centers located at the forgotten nodes, excluding the
nodes in the bag itself. Consequently, we increment the cost vector only when
a center’s node is forgotten making use of the fact that every node is forgotten
exactly once by the definition of the tree decomposition. Lemma 3.6 implies that
for any used center (v, i) and a tidy assignment A we have A(v) “ (v, i), which
guarantees that any used center is eventually accounted for in the cost vector.

For manipulating cost vectors, we shall use the common notation where ei

is the vector with ith entry set to 1 and all other entries set to 0. The algorithm
uses the same set of all valid cost vectors C as defined for the Tree-Coverage
algorithm.

30 M. Lieskovský and J. Sgall

Bag Assignment. For any bag B the bag assignment (of centers) is a function
Abag : B → K. We extend the concept of uv-tidiness to bag assignments for edges
uv P E(G) with u, v P B. For convenience, when manipulating bag assignments,
we also view Abag as a set of pairs where (v, (w, i)) P Abag if and only if Abag(v) “
(w, i). When changing the bag, we sometimes need to restrict the domain of the
function Abag to a set B′; we use the standard notation Abag|B′ .

Valid Configurations. For every bag B we compute the set of all pairs of a valid
cost vector and a bag assignment for which there exists a corresponding B-
tidy subtree assignment with the given cost vector. We call such pairs valid
configurations.

Lemma 3.9. A valid configuration with cost vector x for the root bag of T exists
if and only if there exists a solution with cost vector x for the entire graph G.

Proof. Suppose a valid configuration with cost vector x exists for the root bag
B. By definition, then there exists a subtree assignment Atree which is B-tidy
and has cost vector x. Since B is the root of T, a B-tidy subtree assignment for
B corresponds to a tidy assignment for G. The image of any tidy assignment
for G is a solution with the same cost vector. Thus a solution exists if a valid
configuration exists.

The other direction follows from the fact that a greedy assignment exists for
every solution and both has a valid cost vector and, by Lemma 3.7, is tidy. ��

Algorithm Graph-Coverage. We process the nice tree decomposition recursively,
computing the set of valid configurations for each bag. Without loss of gener-
ality, we only consider configurations that have a valid cost vector and a bag
assignment mapping each node v P B a center from Kv. We shall use ConfigB

to denote this set of valid configurations for bag B. Observe that |K| ď n�. If
the graph has treewidth tw, |B| ď tw ` 1 holds for any bag. Thus the number
of possible bag assignments for B is at most (n�)tw. Since |C| ď n�, the num-
ber of valid configurations for any bag is at most ntw`��tw. See the algorithm’s
pseudocode on the next page.

Lemma 3.10. Function process computes the correct set of valid configura-
tions for bag B, that is, process(B) “ ConfigB.

Proof. We proceed inductively from the leaves of T which are all leaf bags. We
distinguish cases by the type of bag. Thanks to the inductive process, we assume
we know the correct set of valid configurations for any child bags.

Leaf Bag. Since GB for any leaf bag is an empty graph, there exists only a single
(empty) subtree assignment for it with zero partial cost vector and an empty
bag assignment. Thus {(0, H)} is the correct set of valid configurations for any
leaf bag.

Introduce Bag. Observe that Atree is a subtree assignment for B if and only
if Atree(v) P Kv and (Atree)′ is a subtree assignment for B′, where (Atree)′

Graph Burning and k-Centers 31

Algorithm Graph-Coverage

1: function TwNUkC(root bag, r1, r2, . . . , r�, k1, k2, . . . , k�, C)
2: function process(B)
3: switch based on the type of B do
4: case leaf
5: return {(0, H)}
6: case introduce
7: let v be the node introduced by B and let B′ be the child bag of B
8: P “ process(B′)
9: return {(x, Abag Y {(v, c)}) | (x, Abag) P P, c P Kv}
10: case join
11: let B′ and B′′ be the child bags of B
12: P “ process(B′)
13: Q “ process(B′′)
14: return {(x ` y, Abag) | (x, Abag) P P, (y, Abag) P Q, x ` y P C}
15: case edge
16: let uv be the edge introduced by B and let B′ be the child bag of B
17: P “ process(B′)
18: return {(x, Abag) P P | Abag is uv-tidy}
19: case forget
20: let v be the node removed by B and let B′ be the child bag of B
21: t “ H
22: P “ process(B′)
23: for (x, Abag) P P do
24: if Abag(v) “ (v, i) for some i then � v is a center with radius ri

25: if x ` ei P C then t “ t Y {(x ` ei, A
bag|B)}

26: else � v is not a center
27: t “ t Y {(x, Abag|B)}
28: return t
29: solutions “ process(root bag)
30: return True if solutions �“ H

denotes the restriction of the function Atree to the set of vertices of GB′ . Since
V (GB)\B “ V (GB′)\B′, the partial cost vector of (Atree)′ is equal to the partial
cost vector of Atree. We also already know that process(B′) “ ConfigB′ . Thus
process(B) “ ConfigB .

Join Bag. Observe that GB′ YGB′′ “ GB . Thus Atree is a tidy subtree assignment
for B if and only if Atree|GB′ and Atree|GB′′ are tidy subtree assignments for
B′ and B′′ respectively. Since V (GB′) X V (GB′′) “ B “ B′ “ B′′, a subtree
assignment for B′ can be combined with a subtree assignment for B′′ if and only
if their restrictions to B are equal. Furthermore, the partial cost vector of Atree

is equal to the sum of the partial cost vectors of Atree|GB′ and Atree|GB′′ , as the
sets of forgotten nodes are disjoint. Thus process(B) “ ConfigB .

Edge Bag. Atree is a subtree assignment of B if and only if it is also a subtree
assignment of B′. Atree is a tidy subtree assignment of B if and only if it is a tidy

32 M. Lieskovský and J. Sgall

subtree assignment of B′ and is vw-tidy. Thus (x, A) P ConfigB if and only if
(x, A) P ConfigB′ and A is vw-tidy and thus process(B) “ ConfigB .

Forget Bag. Atree is a subtree assignment for B if and only if it is also a subtree
assignment for B′. We have B Y {v} “ B′, FB “ FB′ Y {v}, and if (x, Abag) P
ConfigB′ , then Abag is a valid assignment and thus it is a restriction of some tidy
subtree assignment Atree for B′. Then (y, Abag|B) P ConfigB where y “ x ` ei

if (v, i) is in the image of Atree and y “ x otherwise. Lemma 3.6 implies that
Abag(v) “ (v, i) if and only if (v, i) is in the image of Atree, regardless of the
choice of Atree, and thus process(B) “ ConfigB . ��
Theorem 3.11. Algorithm Graph-Coverage solves the NUkC problem in
polynomial time, namely with O(|T|n2�`tw�2¨tw) arithmetic operations.

Proof. By Lemma 3.10, process(root bag) “ Configroot bag. By definition of
valid configurations, a valid configuration exists for the root bag if and only if
there exists a tidy assignment for the entire graph with a valid cost vector. The
correctness of the algorithm follows.

For the bound on time complexity, we recall the fact that the number of
valid configurations for any bag is at most ntw`��tw. Thus the set of valid con-
figurations for a bag can be computed in O(n2�`tw�2¨tw) if given the sets of valid
configurations for each child. ��

4 A PTAS for Burning Graphs of Small Treewidth

As indicated in the introduction, we deviate from the scheduling view of graph
burning and instead view it as a non-uniform k-center problem with centers of
different radii.

An instance of the graph burning problem consists of a graph G on n nodes
with edge lengths from R

`
0 . The distance d(u, v) is defined as the length of the

shortest path from u to v. For the decision variant of the problem, we are also
given a natural number g. The task is to determine if it is possible to select
g centers, each with a unique integer radius from 0 to g ´ 1, so that the centers
cover all nodes of G. We can view this problem as a variation of NUkC problem
where � “ g and ri “ i ´ 1. For the optimization problem, the objective is to
minimize g. Note that even if the edge lengths are non-integral and/or large, the
possible values of g are restricted to integers 1, . . . , n.

Let us now demonstrate how the Graph-Coverage algorithm can be used
to construct a PTAS for the graph burning on graphs of small treewidth. In
particular, for every ε > 0 there exists an algorithm that is in XP when param-
eterized by treewidth of G and always either proves that no solution for g exists
or finds a solution for 	(1 ` ε)g
. We shall once again assume that we are given
a tree decomposition T for G with |B| ď tw ` 1 for all bags.

Modifying Instances. When given an instance I of the graph burning problem,
we proceed by constructing an instance I ′ of NUkC problem which has a solution
if I had a solution. We then show that if I ′ has a solution then a solution exists

Graph Burning and k-Centers 33

for instance I ′′ of graph burning, where I ′′ differs from I only in the parameter
g′′ ď (1 ` 2ε)g ` 2.

We construct I ′ by increasing the radii of the centers in such a way as to
reduce the number of distinct radii being used while not increasing any radius
by more than 1 ` gε.

Lemma 4.1. If S is a solution for an instance I “ (G, (r1, . . . , r�), (k1, . . . , k�))
of NUkC problem with a valid cost vector, and both r′

i ě ri and k′
i ě ki for all

i, then S is also a solution for an instance I ′ “ (G, (r′
1, . . . , r

′
�), (k

′
1, . . . , k

′
�)) of

NUkC problem with a valid cost vector.

Proof. By Definition 2.1 K Ď V (G) ˆ {1, . . . , �}, Kv “ {(w, i) P K | d(v, w) ď
ri}, and S Ď K is a solution to the instance I “ (G, r,x) if and only if S XKv �“
H for all Kv.

Since ri ď r′
i, we know that Kv Ď K ′

v and thus S X K ′
v �“ H if S X Kv �“ H.

Thus S is a solution to I ′ if it is a solution to I.
Since ki ď k′

i, if a solution’s cost vector is valid for I, it is also valid for I ′. ��
Lemma 4.2. Let I “ (G, r,k) and I ′ “ (G, r′,k′) be instances of NUkC prob-
lem where r′ contains ki copies of ri and k′ consists of

∑
ki ones. Then the

instances I and I ′ are equivalent, i.e., given a solution S of I, one can construct
a solution S′ of I ′ and vice versa.

Proof. Given S, we construct S′ by changing, for each i, the (at most) ki centers
(v, i) into centers (v, j) with distinct j such that r′

j “ ri; by definition, ki of such
j’s are available. Conversely, given S′, we replace each center (v, j) by a center
(v, i) use such that ri “ r′

j . For a given r, let R “ {i | ri “ r}. Then S′ has at
most

∑
iPR ki centers with r′

j “ r, so we can distribute them among the i P R to
give a solution S. ��

Algorithm Graph-Burning

1: function TwBurn(root bag, g, ε)
2: s “ 1 ` �gε�
3: � “ �g/s�
4: (r′

1, r
′
2, r

′
3, . . . , r

′
�) “ (s ´ 1, 2s ´ 1, 3s ´ 1, . . . , �s ´ 1) � g ď �s ď 1 ` (1 ` ε)g

5: (k1, k2, k3, . . . , k�) “ (s, s, s, . . . , s)
6: C “ {(y1, y2, . . . , y�) P N

� | (∀i)(yi ď s)}
7: return TwNUkC(root bag, r1, r2, . . . , r�, k1, k2, . . . , k�, C)

Theorem 4.3. Algorithm Graph-Burning gives a PTAS for the graph burn-
ing problem on graphs with a constant treewidth.

34 M. Lieskovský and J. Sgall

Proof. We show that (i) for any positive instance, Graph-Burning gives a
positive answer and (ii) whenever Graph-Burning gives a positive answer,
then there exists a solution for the graph burning instance with g increased to
(1 ` 2ε)g.

The instance I of graph burning can also be viewed as an instance of NUkC
problem with � “ g, ri “ i ´ 1 and C “ {0, 1}�. By Lemma 4.1, if a solution
with a valid cost vector exists for I, there also exists a solution with a valid
cost vector for instance where ri is increased to the nearest ts ´ 1 ≥ ri. The
instance I ′ is then created by grouping the sets of s identical radii together and
(possibly) adding up to s ´ 1 centers of the greatest radius. Thus, by Lemma
4.2, a solution for I ′ exists if a solution for I exists. This proves (i), as I ′ is the
instance submitted to TwNUkC at line 7 of the algorithm.

To show (ii), let S′ be a solution for instance I ′ of NUkC problem. By Lemma
4.2, we can construct a solution for an instance where the identical radii are
ungrouped. We can then replace the s copies of radius r′

i with r′
i, r

′
i ` 1, . . . , r′

i `
s´1, thus getting an instance with (1`ε)g unique radii s´1, s, s`1, . . . , (�`1)s´2
for which, by Lemma 4.1, we can construct a solution given a solution to I ′. Since
(�`1)s “ (�g/s�`1)s < (g/s`2)s “ g `2s, we have (�`1)s´2 ≤ g `2s´3 ď
g ` 2gε ´ 1. Thus the centers used by this instance are a subset of the centers
available in an instance of graph burning (G, 	(1 ` 2ε)g
).

Time complexity is entirely dominated by the complexity of TwNUkC.
Since s “ 1 ` 	gε
, we know that � “ �g/s� ď 1 ` 1/ε and thus we get
O(|T|n2`2/ε`tw(1 ` 1/ε)2¨tw). ��

5 Conclusions

We presented an algorithm that puts the non-uniform k-center problem in XP
when parameterized by the number of different radii and the treewidth of the
graph. We then used this algorithm to construct a PTAS for the graph burning
problem for graphs of small treewidth. This significantly extends the PTAS from
[4], which only applied to linear forests.

Acknowledgements. Partially supported by project SVV-2020-260578 and GA ČR
project 19-27871X. We are grateful to anonymous referees for many helpful comments
and references.

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable
graphs. J. Algorithms 12(2), 308–340 (1991). https://doi.org/10.1016/0196-
6774(91)90006-K

2. Bessy, S., Bonato, A., Janssen, J., Rautenbach, D., Roshanbin, E.: Burning a graph
is hard. Discrete Appl. Math. 232, 73–87 (2017). https://doi.org/10.1016/j.dam.
2017.07.016

3. Bonato, A., Janssen, J., Roshanbin, E.: How to burn a graph. Internet Math.
12(1–2), 85–100 (2015). https://doi.org/10.1080/15427951.2015.1103339

https://doi.org/10.1016/0196-6774(91)90006-K
https://doi.org/10.1016/0196-6774(91)90006-K
https://doi.org/10.1016/j.dam.2017.07.016
https://doi.org/10.1016/j.dam.2017.07.016
https://doi.org/10.1080/15427951.2015.1103339

Graph Burning and k-Centers 35

4. Bonato, A., Kamali, S.: Approximation algorithms for graph burning. In: Gopal,
T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 74–92. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-14812-6 6

5. Chakrabarty, D., Goyal, P., Krishnaswamy, R.: The non-uniform k-center problem.
ACM Trans. Algorithms 16(4) (2020). https://doi.org/10.1145/3392720

6. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility
location problems with outliers. In: Kosaraju, S.R. (ed.) Proceedings of the 12th
Annual Symposium on Discrete Algorithms (SODA), pp. 642–651. ACM/SIAM
(2001). http://dl.acm.org/citation.cfm?id=365411.365555

7. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J., Wojtaszczyk,
J.O.: Solving connectivity problems parameterized by treewidth in single exponen-
tial time (2011)

8. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixed-parameter
algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans. Algo-
rithms 1(1), 33–47 (2005). https://doi.org/10.1145/1077464.1077468

9. Feldmann, A.E.: Fixed-parameter approximations for k-center problems in low
highway dimension graphs. Algorithmica 81(3), 1031–1052 (2019). https://doi.
org/10.1007/s00453-018-0455-0

10. Garćıa-Dı́az, J., Pérez-Sansalvador, J.C., Rodŕıguez-Henŕıquez, L.M.X., Cornejo-
Acosta, J.A.: Burning graphs through farthest-first traversal. IEEE Access 10,
30395–30404 (2022). https://doi.org/10.1109/ACCESS.2022.3159695

11. Hakimi, S.L.: Optimum locations of switching centers and the absolute centers and
medians of a graph. Oper. Res. 12(3), 450–459 (1964). https://doi.org/10.1287/
opre.12.3.450

12. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem.
Math. Oper. Res. 10(2), 180–184 (1985). https://doi.org/10.1287/moor.10.2.180

13. Inamdar, T., Varadarajan, K.R.: Non-uniform k-center and greedy clustering. In:
Czumaj, A., Xin, Q. (eds.) 18th Scandinavian Symposium and Workshops on Algo-
rithm Theory, SWAT. LIPIcs, vol. 227, pp. 28:1–28:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.SWAT.2022.28

14. Jia, X., Rohwedder, L., Sheth, K., Svensson, O.: Towards non-uniform k-center
with constant types of radii. In: Bringmann, K., Chan, T. (eds.) 5th Symposium on
Simplicity in Algorithms, SOSA@SODA 2022, pp. 228–237. SIAM (2022). https://
doi.org/10.1137/1.9781611977066.16

15. Katsikarelis, I., Lampis, M., Paschos, V.T.: Structural parameters, tight bounds,
and approximation for (k, r)-center. Discrete Appl. Math. 264, 90–117 (2019).
https://doi.org/10.1016/j.dam.2018.11.002

16. Kloks, T. (ed.) Pathwidth of pathwidth-bounded graphs. In: Treewidth. LNCS,
vol. 842, pp. 147–172. Springer, Heidelberg (1994). https://doi.org/10.1007/
BFb0045388

17. Kobayashi, Y., Otachi, Y.: Parametrized complexity of graph burning. Algorith-
mica 84, 2379–2393 (2022). https://doi.org/10.1007/s00453-022-00962-8

https://doi.org/10.1007/978-3-030-14812-6_6
https://doi.org/10.1145/3392720
http://dl.acm.org/citation.cfm?id=365411.365555
https://doi.org/10.1145/1077464.1077468
https://doi.org/10.1007/s00453-018-0455-0
https://doi.org/10.1007/s00453-018-0455-0
https://doi.org/10.1109/ACCESS.2022.3159695
https://doi.org/10.1287/opre.12.3.450
https://doi.org/10.1287/opre.12.3.450
https://doi.org/10.1287/moor.10.2.180
https://doi.org/10.4230/LIPIcs.SWAT.2022.28
https://doi.org/10.1137/1.9781611977066.16
https://doi.org/10.1137/1.9781611977066.16
https://doi.org/10.1016/j.dam.2018.11.002
https://doi.org/10.1007/BFb0045388
https://doi.org/10.1007/BFb0045388
https://doi.org/10.1007/s00453-022-00962-8

Scheduling with Machine Conflicts

Moritz Buchem1 , Linda Kleist2 ,
and Daniel Schmidt genannt Waldschmidt3(B)

1 School of Business and Economics, Maastricht University,
Maastricht, The Netherlands

m.buchem@maastrichtuniversity.nl
2 Department of Computer Science, TU Braunschweig, Braunschweig, Germany

kleist@ibr.cs.tu-bs.de
3 Institute for Mathematics, TU Berlin, Berlin, Germany

dschmidt@math.tu-berlin.de

Abstract. We study the scheduling problem of makespan minimiza-
tion with machine conflicts that arise in various settings, e.g., shared
resources for pre- and post-processing of tasks or spatial restrictions. In
this context, each job has a blocking time before and after its processing
time, i.e., three parameters. Given a set of jobs, a set of machines, and
a graph representing machine conflicts, the problem SchedulingWith-
MachineConflicts (smc), asks for a conflict-free schedule of minimum
makespan in which the blocking times of no two jobs intersect on con-
flicting machines.

We show that, unless P = NP, smc on m machines does not allow for
a O(m1−ε)-approximation algorithm for any ε > 0, even in the case of
identical jobs and every choice of fixed positive parameters, including the
unit case. Complementary, we provide approximation algorithms when a
suitable collection of independent sets is given. Finally, we present poly-
nomial time algorithms to solve the problem for the case of unit jobs
smc-Unit on special graph classes. As our main result, we solve smc-
Unit for bipartite graphs by using structural insights for conflict graphs
of star forests. As the set of active machines at each point in time induces
a bipartite graph, the insights yield a local optimality criterion.

Keywords: Scheduling · Machine conflict · Approximation
algorithm · NP-hard · Inapproximability · Star forest · Bipartite graph

1 Introduction

Distributing tasks smartly is a challenge we face in numerous settings, ranging
from every day life to optimization of industrial processes. Often these assign-
ments must satisfy additional requirements. In this work, we study a variant

D. Schmidt genannt Waldschmidt—was funded by the DFG under Germany’s Excel-
lence Strategy - The Berlin Mathematics Research Center MATH+ (EXC-2046/1,
project ID: 390685689).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Chalermsook and B. Laekhanukit (Eds.): WAOA 2022, LNCS 13538, pp. 36–60, 2022.
https://doi.org/10.1007/978-3-031-18367-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18367-6_3&domain=pdf
http://orcid.org/0000-0002-1590-346X
http://orcid.org/0000-0002-3786-916X
http://orcid.org/0000-0002-9331-445X
https://doi.org/10.1007/978-3-031-18367-6_3

Scheduling with Machine Conflicts 37

of the well-studied scheduling problem of makespan minimization when machine
conflicts are present. These conflicts arise in various contexts as a result of shared
resources or spatial constraints which prohibit machines to complete certain
tasks simultaneously. We are particularly interested in situations when external
pre- and post-processing of jobs is necessary immediately before and after jobs
are internally processed by a machine.

Conflicts of pre- and post-processing may be due to shared resources or spa-
tial constraints. Examples of shared resources arise in manufacturing and logis-
tics, where a common server is used for loading and unloading jobs onto and from
machines immediately before or after jobs can be processed. Specific examples
mentioned in the literature include manufacturing systems served by a single
robot which can only serve one machine at a time [22,30] or steel production in
which furnaces must be served non-preemptively before and after heating pro-
cesses [41]. Another example of shared resources appears in computing problems,
in which different processors may share different databases or external proces-
sors that must be accessed before and after executing tasks on the processor
and can only be accessed by one processor at a time. An up-to-date example of
spatial conflicts occurs in pandemics when schedulers are faced with potentially
infectious jobs which should keep sufficient distance to each other, e.g., in test-
ing or vaccination centers. Similarly, spatial conflicts play a crucial role when
jobs may have private information or data that should not be shared; e.g., the
interrogation of suspects in multiple rooms.

The Problem. SchedulingWithMachineConflicts (smc) is a scheduling
problem in which jobs on conflicting machines are processed such that certain
blocking intervals of their processing time do not overlap. An instance of smc is
defined by a set of jobs J and a conflict graph G = (V,E) on a set of machines V
where two machines i and i′ are in conflict if and only if {i, i′} ∈ E. In contrast
to classical scheduling problems, each job j has three parameters (

↼

bj , pj ,
⇀

bj),
where

↼

bj and
⇀

bj denote the first and second blocking time of j, respectively,
and pj denotes its processing time. Together they constitute the system time
qj =

↼

bj + pj +
⇀

bj ; note that the order
↼

bj , pj ,
⇀

bj must be maintained. We seek
schedules in which the blocking times of no two jobs on conflicting machines
intersect. For an example consider Fig. 3. Formally, a (conflict-free) schedule Π
is an assignment of jobs to machines and starting times such that

– for each point in time, every machine executes at most one job,
– for every edge {i, i′} ∈ E and two jobs j, j′ ∈ J assigned to machines i and

i′, respectively, the intervals of the blocking times of j and j′ do not overlap
interiorly in time.

Moreover, jobs cannot be interrupted, i.e., the starting and completions times
of each job differ by the system time. In other words, all schedules are non-pre-
emptive. The makespan ‖Π‖ of a schedule Π is defined as the earliest point
in time when all jobs are completed. We seek for a schedule with minimum
makespan. Throughout this paper, we use n := |J | and m := |V | to refer to the
number of jobs and machines, respectively.

38 M. Buchem et al.

1.1 Our Contribution and Organization

We first consider the problem smc with identical jobs (smc-Id). Identifying
intrinsic connections to maximum independent sets, we show that even if (

↼

b , p,
⇀

b)
are fixed positive parameters for any ε > 0, there is no O(m1−ε)-approximation
for smc-Id, unless P = NP (Theorem 1). However, when a suitable collection
of maximum independent sets is given or can be found in polynomial time, we
present approximation algorithms with performance guarantee better than 2.5
(Theorem 2). An approximation algorithm can also be obtained when approxi-
mate maximum independent sets are at hand (Theorem 3).

In Sect. 3, we consider smc with unit jobs (smc-Unit), i.e.,
↼

b = p =
⇀

b = 1.
Motivated by the inapproximability result for smc-Unit on general graphs (The-
orem 1), we focus on special graph classes. As our main result, we present a
polynomial time algorithm to compute optimal schedules on bipartite graphs.
Bipartite graphs are of special interest, because for any conflict graph and for
every point in time, the set of active machines induces a bipartite graph. Hence,
our insights can be understood as local optimality criteria of schedules for all
graphs. To solve the problem to optimality we develop a divide-and-conquer
algorithm based on structural insights for stars. Moreover, we provide an effi-
cient representation of schedules so that the running time of our algorithm is
polynomial in the size of G and log(n).

Full details of all proofs are presented in the appendix (see Sect. 5 and Sect. 6).
A full version can be found at [11].

1.2 Related Work

The problem smc generalizes the classical scheduling problem of makespan min-
imization on parallel identical machines, also denoted by P ||Cmax in the three-
field notation [21]. In fact, P ||Cmax is equivalent to two special cases of smc:

– if the blocking times of all jobs vanish, i.e.,
↼

bj =
⇀

bj = 0 for all j ∈ J , and
– if the edge set of the conflict graph is the empty set.

For a constant number of machines, P ||Cmax is weakly NP-hard, while it is
strongly NP-hard when m is part of the input [18]. Graham [19,20] introduced
list scheduling algorithms to obtain the first constant approximation algorithms
for this problem. Improved approximation guarantees have been achieved by a
fully polynomial time approximation scheme (FPTAS) when m is constant [38]
and a polynomial time approximation scheme (PTAS) when m is part of the
input [26]. In subsequent work, the latter has been improved to efficient polyno-
mial time approximation schemes (EPTAS), we refer to [4,13,25,28,29].

Scheduling with pre- and post-processing has been considered in different
models in the literature. One such model was introduced by Hall et al. [22] in
which jobs must be scheduled non-preemptively on identical parallel machines
but have to be pre-processed by a common server immediately. This model cor-
responds to smc with

⇀

bj = 0 for all jobs j and a complete graph as the conflict
graph. The special cases of unit first blocking times

↼

bj = 1∀j and m = 2 [22]

Scheduling with Machine Conflicts 39

and the case of identical processing times pj = p ∀j and m = 2 [10] were shown
to be weakly NP-hard, while the cases of

↼

bj =
↼

b ∀j and m = 2 [22] and the
case of

↼

bj = 1∀j [35] were shown to be strongly NP-hard. On the positive
side, if

↼

bj = pj = 1∀j the problem can be solved in time O(n) [22]. Moreover,
Kravchenko and Werner [35] present a pseudo-poynomial algorithm for the case
of

↼

bj = 1∀j and m = 2. Xie et al. [41] extend this model to a single server
used for pre- and post-processing. This problem corresponds to smc with Km

as the conflict graph. Xie et al. [41] and Jiang et al. [30] analyze the worst case
performance of the list scheduling algorithms introduced by Graham [19,20]. Fur-
thermore, heuristics and mixed-integer programming techniques were developed
for several special cases [1–3,16,33]. Two other models are the master-and-slave
problem introduced by Kern and Nawijn [31] and termed by Sahni [39] and
the problem of scheduling jobs with segmented self-suspension introduced by
Rajkumar et al. [37]. Chen et al. [12] present an approximation algorithm for
the special case of a single suspension interval in which each job consists of three
components.

The concept of machine conflicts has previously also been considered in the
context of buffer minimization on multiprocessor systems. Chrobak et al. [14]
show that there is no polynomial approximation ratio unless P = NP. For the
online case, they present competitive algorithms for general graphs as well as
special graph classes. Höhne and van Stee [27] develop competitive algorithms
when the conflict graph is a path.

Scheduling with conflict graphs has also been investigated in presence of
job conflicts. While in one model, the conflicting jobs cannot be scheduled on
the same machine [7,9,15], in a second model, the conflicting jobs may not be
processed concurrently on different machines [5,6,8,17,23,40]. In these works,
the complexity and approximability has been investigated for special classes of
conflict graphs in both settings.

2 Identical Jobs

In this section, we consider smc with identical jobs, denoted by smc-Id. More
specifically, smc-Id(G,n, (

↼

b ,p,
⇀

b)) denotes an instance with a conflict graph G
and n identical jobs with parameters (

↼

b , p,
⇀

b). We present hardness and approx-
imation results for any fixed choice of

↼

b , p,
⇀

b . Using the fact that there exists no
O(mε−1)-approximation for computing maximum independent sets [24,36,42],
we obtain an inapproximability result for all fixed positive constants

↼

b , p,
⇀

b .

Theorem 1. For any ε > 0, there exists no O(m1−ε)-approximation for smc-
Id, unless P = NP. This even holds for any fixed positive parameters (

↼

b , p,
⇀

b).

Note that this result holds even for the case when the running time depends
polynomially on n (instead of log(n)).

Proof-Sketch. We distinguish the two cases when either all jobs have long block-
ing times, i.e., max{↼

b ,
⇀

b } > p (Theorem 5), or all jobs have short blocking times,
i.e., max{↼

b ,
⇀

b } ≤ p (Theorem 8). By symmetry, we may assume that
⇀

b ≤ ↼

b .

40 M. Buchem et al.

For long blocking times, we show that any schedule is basic, i.e., it uses only
an independent set of machines (Lemma 8). The inapproximability result follows
from the connection to the problem of finding a maximum independent set.

For short blocking times, we use a notion generalizing a maximum indepen-
dent set. For a graph G = (V,E) and c ∈ N≥1, a maximum induced c-colorable
subgraph, or short maximum c-IS, of G is a set of c disjoint independent sets
I1, . . . , Ic ⊆ V whose union has maximum cardinality. Clearly, a 1-IS is an inde-
pendent set. Any schedule induces a c-IS and it can be found in polynomial time
(Lemma 9). Because the length of a schedule is related to the size of its induced
c-IS (Lemma 12), an approximation algorithm yields an approximate maximum
c-IS with a performance guarantee of the same order. However, for any c ∈ N≥1,
a maximum c-ISs is inapproximable [36].

By the proof of Theorem 1, finding a maximum c-IS polynomially reduces
to smc-Id. One may wonder how the difficulty changes, when maximum c-ISs
of the graph are at hand. We show that if we are given a suitable collection
of maximum independent sets of the conflict graph, we obtain approximation
algorithms with performance guarantee better than 2.5. To this end, we define
a class of partial schedules using a collection of independent sets of machines.

c-Patterns. Consider an instance of smc-Id on a conflict graph G. Let c ∈ N≥1

with c ≤ �p/↼
b�+1 and let I = (I1, I2, . . . , Ic) be a c-tuple of disjoint independent

sets of G. A partial schedule of length q + (c − 1) · ↼

b starting at time t is called
a c-pattern on I if on each machine i in I� with � ∈ {1, . . . , c}, there is one job
starting at time t + (� − 1)

↼

b , see also Fig. 1.

Fig. 1. A 3-pattern on three disjoint independent sets I1, I2, I3.

Theorem 2. Let G be a graph and let q =
↼

b + p +
⇀

b be the system time.
If max{↼

b ,
⇀

b } > p and we are given a maximum 1-IS of G, then an optimal
schedule of smc-Id can be computed in polynomial time.

If 0 <
⇀

b ≤ ↼

b ≤ p and we are given a maximum (�p/↼
b� + 1)-IS of G, then smc-

Id allows for a (2+(�p/↼
b�+1)−1)-approximation, where (2+(�p/↼

b�+1)−1) ≤ 2.5.
If p/↼

b ∈ N, it even allows for an (1 + p/q)-approximation, where (1 + p/q) < 2.

Proof-Sketch. For long blocking times, any schedule is basic and hence, an opti-
mal schedule uses the provided maximum independent set and can thus be com-
puted in polynomial time (Theorem 6).

For short blocking times, we provide a lower bound on the optimal makespan.
Specifically, we bound the number of jobs starting within an interval of length
λ for some specific λ ≤ q. We then show that the number of jobs is bounded by
α, the size of a maximum (�p/↼

b� + 1)-IS. This yields a lower bound of λ · 	n/α

Scheduling with Machine Conflicts 41

on the optimal makespan. To obtain an upper bound, we construct a schedule
which repeatedly uses (k + 1)-patterns, where k = �p/↼

b�. ��
Similarly, if we are given an approximate c-IS of the conflict graph for some

suitable c, corresponding approximation results can be derived.

Theorem 3. Let G be a graph. If max{↼

b ,
⇀

b } > p and we are given a 1/γ-
approximate 1-IS of G, then smc-Id allows for a 	γ
-approximation.

If 0 <
⇀

b ≤ ↼

b ≤ p and we are given a 1/γ-approximate (�p/↼
b� + 1)-IS of G,

then smc-Id allows for a 5γ-approximation.

3 Unit Jobs

Now, we turn our attention to smc-Unit in which we are given n identical unit
jobs where

↼

b = p =
⇀

b = 1 for all jobs. On one hand, there exists no O(m1−ε)-
approximation for smc-Unit on general graphs with m vertices, unless P = NP
(Theorem 1). On the other hand, Theorem 2 yields a 4/3-approximation algo-
rithm for smc-Unit if we are given a maximum 2-IS. Therefore, to improve this
performance guarantee, we focus on special graph classes (for which maximum
1- and 2-IS can be computed in polynomial time).

Complete graphs play a special role in the context when machines share a
single resource. We show that smc-Unit on complete graphs can be reduced to
smc-Unit on a single edge and solved efficiently.

Lemma 1. For every n, an optimal schedule for smc-Unit(Km, n) can be com-
puted in time linear in log n. In particular, for m ≥ 2, it coincides with an
optimal schedule for K2 of makespan 4�n/2� + 3(n mod 2).

Bipartite graphs constitute the arguably most interesting graph class in this
context because for each schedule, the set of active machines at any point in time
induces a bipartite subgraph. Therefore, optimal schedules on bipartite graphs
can be understood as a local optimality criterion.

Observation 2. Consider an instance smc-Unit on a graph G and a feasible
schedule Π. For every point in time t, the set of machines processing a job at
time t in Π induces a bipartite subgraph of G.

Note that a maximum 1-IS of a bipartite graph can be computed in poly-
nomial time [34] and the maximum 2-IS is trivially the entire vertex set. In the
remainder, we present a polynomial time algorithm to compute optimal sched-
ules.

Theorem 4. For every bipartite graph G and every n, an optimal schedule for
smc-Unit(G,n) can be computed in polynomial time.

42 M. Buchem et al.

Our algorithm is based on a divide-and-conquer technique. In a first step,
we derive structural insights of optimal schedules on stars which allow to solve
smc-Unit on stars in polynomial time (Sect. 3.1). In a second step, we show how
to exploit these insights to find optimal schedules on general bipartite graphs
by considering a subgraph whose components are stars with special properties
(Sect. 3.2). Finally, we present a polynomial time algorithm to find an adequate
subgraph (Sect. 3.3).

3.1 Stars

An essential step towards our polynomial time algorithm for bipartite graphs is
to investigate the structure of optimal schedules on stars. A star is a complete
bipartite graph S� := K1,� on � + 1 ≥ 2 vertices. For � ≥ 2, S� has � leaves and
a unique center of degree �. For � = 1, either vertex can be seen as the center
of S1. We show that optimal schedules on stars can be obtained by using special
types of 1- and 2-patterns (see definition of c-pattern for c = 1, 2). We define the
special patterns as follows.

A/B-Patterns. An A-pattern on a graph H is a 1-pattern on some maximum
1-IS of H. A B-pattern on H is a 2-pattern on some maximum 2-IS of H. Note
that the difference to 1- and 2-patterns is that we do not specify the 1- and 2-ISs.
An AB-schedule on H consists of A- and B-patterns only. Consider Fig. 2 for an
example. Let n ∈ N. We say smc-Unit(H,n) admits an optimal AB-schedule if
there exists an optimal schedule that can be transformed into an AB-schedule
on H by possibly adding more jobs without increasing the makespan.

Using these patterns we derive a structural property of optimal schedules for
smc-Unit on stars that allows us to compute them in polynomial time.

Lemma 3. For every star S and every n, smc-Unit(S, n) admits an optimal
AB-schedule.

Proof. The statement is obvious for S1. For a star S� with � ≥ 2, consider an
optimal schedule and determine a leaf processing a maximum number of jobs.
Changing all leaves to this schedule may only increase the number of processed

Fig. 2. An AB-schedule on S3 consist-
ing of one A-pattern followed by one
B-pattern.

Fig. 3. Optimal schedule on a tree with 7
machines and 22 jobs with makespan 12.

Scheduling with Machine Conflicts 43

jobs and yields a valid schedule in which all � leaves have the same induced
schedule. Finally, for each job j processed on a leaf of S�, there exist two cases:
If no job is processed on the center vertex of the star during the system time (of
length 3) of j, we obtain an A-pattern. Otherwise, the job on the center and the
job on the leaves are shifted by exactly one time step and we obtain a B-pattern.

��
Corollary 1. For every star S and every n, an optimal schedule for smc-
Unit(S, n) can be computed in time linear in log n and |S|.

Specifically, for every S�, there exists X ∈ {A,B} such that an optimal sched-
ule has at most 2 X-patterns, i.e., an optimal schedule has makespan

min
k=0,1,2

{
4
⌈

n − k�

� + 1

⌉
+ 3k, 3

⌈
n − k(� + 1)

�

⌉
+ 4k

}
, (1)

where 	·
 denotes the usual ceiling function; however, for negative reals it eval-
uates to 0.

We later exploit the fact that for S3, there exist two optimal AB-schedules
which finish twelve jobs in time 12, namely 4 A-patterns as well as 3 B-patterns.
This fact provides some flexibility for designing optimal schedules for general
bipartite graphs.

3.2 Optimal Schedules for Bipartite Graphs for a Given Star Forest

While we can restrict our attention to AB-schedules for stars, this property does
not generalize to all bipartite graphs. In fact, it does not even hold for trees as
illustrated in Fig. 3.

Observation 4. There exists a tree T such that no optimal schedule for smc-
Unit(T, n) is an AB-schedule with respect to T .

Interestingly, the optimal schedule shown in Fig. 3 is comprised of two AB-
schedules on the two stars obtained by deleting the gray edge. Combining this
insight with the optimality of AB-schedules for stars is the basis of our divide-
and-conquer algorithm. The key idea is to find a spanning subgraph H of G for
which optimal AB-schedules with respect to H are among the optimal schedules
for G. In particular, we identify subgraphs consisting of stars for which feasibility
of AB-schedules can be encoded by certain vertex colorings of G. To do so, we
introduce the following notions.

Star Forests and I, II, III-Colorings. A subgraph H of a graph G is a star
forest of G if each component of H is a star and H contains all vertices of G.

We consider a star forest H of a bipartite graph G. In particular, we want to
use specific vertex subsets of H, denoted by Ai and Bi, to process the jobs. The
idea is to schedule A-patterns on the Ai’s and B-patterns on the Bi’s.

A vertex subset A1 is a I-coloring of (G,H) if it is a maximum independent
set of both G and H. A I-coloring allows to schedule an A-pattern on H (by

44 M. Buchem et al.

placing one job on each machine in A1), yielding a valid schedule for G, see Fig. 4
(left).

Two disjoint vertex subsets A2, B2 are a II-coloring of (G,H), if no vertex of
A2 is adjacent to another vertex from A2 ∪B2 in G and the following properties
hold: (i) for each S = S�, � ≥ 3, A2 ∩ S is a maximum independent set of S, (ii)
B2 contains the vertices of each S1, and (iii) for each S2, either A2 ∩ S2 is a
maximum independent set of S2 or B2 contains the vertices of S2. A II-coloring
allows to schedule 3 A-patterns on stars with leaves in A2 and 2 B-patterns on
stars with vertices in B2, see Fig. 4 (middle).

Two disjoint vertex subsets A3, B3 are a III-coloring of (G,H), if no vertex of
A3 is adjacent to another vertex from A3 ∪B3 in G and the following properties
hold: (i) for each S = S�, � ≥ 4, A3 ∩ S is a maximum independent set of S, (ii)
B3 contains the vertices of each S1 and each S2, and (iii) for each S3, A3∩S3 is a
maximum independent set of S3 or B3 contains the vertices of S3. A III-coloring
allows to schedule 4 A-patterns on stars with leaves in A3 and 3 B-patterns on
stars with vertices in B3, see Fig. 4 (right).

Star forests and I, II, III-colorings help us to extend the structural insights on
stars to general bipartite graphs. Particularly, we show that an optimal schedule
on a star forest admitting I, II, III-colorings also yields a feasible schedule with
respect to G and is, therefore, also optimal.

Lemma 5. Let H be a star forest of a connected bipartite graph G on at least
two vertices. Given a I-coloring A1, a II-coloring (A2, B2) and a III-coloring
(A3, B3) of (G,H), there exists a polynomial time algorithm to compute an opti-
mal schedule for smc-Unit(G,n).

Proof-Sketch. Let Π ′ be an optimal schedule for smc-Unit(G,n). By Lemma
3, there exists an optimal AB-schedule Π for smc-Unit(H,n). Because H is a
subgraph of G, we have ‖Π‖ ≤ ‖Π ′‖. We distinguish two cases.

If ‖Π‖ ≤ 20, we show that there exists an optimal AB-schedule Π∗ on H that
is feasible for G. The schedule Π∗ is constructed as follows: Each A-pattern is
scheduled on A1, each B-pattern on V , 3 A-patterns on A2, 2 B-patterns on B2,
4 A-patterns on A3, and 3 B-patterns on B3.

Fig. 4. A graph and a star forest with a I-, II-, and III-coloring and corresponding
schedules. Vertices in Ai are colored in asparagus and vertices in Bi in blue. (Color
figure online)

Scheduling with Machine Conflicts 45

If ‖Π‖ ≥ 21, we show that each star on H contains either 4 A or 3 B patterns.
Iteratively, shifting these to the front, we obtain a rest schedule of makespan at
most 20. We thus need to compare 20 schedules to compute the optimal schedule.

��
To complete the proof of Theorem 4, it remains to show how to find a star

forest and the corresponding colorings.

3.3 Computing a Star Forest with I, II, III-Colorings

We compute such a star forest and corresponding I, II, III-colorings in four
phases. First, we find an initial star forest H admitting a feasible I-coloring.
Then, we modify H in two phases to ensure the existence of a II- and III-coloring
of the star forest, respectively. Finally, we compute all colorings. Modifications
of the initial star forest are necessary because of the possible appearance of
so-called alternating paths.

Alternating Paths. Let H = (V,E′) be a star forest of a bipartite graph
G = (V,E). Let C1, . . . , Ck be distinct stars of H and P be a path in G on the
vertices v1, v2 . . . , v2k−1 with the following properties:

– for even i, vi is a leaf of star Ci/2+1,
– for odd i, vi is the center of star C(i+1)/2, and
– the edge {vi, vi+1} ∈ E′ if and only if i is even.

We say P is an alternating path of type II if C1 � S1, Ci � S2 for all i =
2, . . . , k − 1 and Ck � S� with � ≥ 3. For an illustration of an alternating path
of type II, see Fig. 5 (left).

Fig. 5. Alternating path of type II. Black edges belong to H, gray edges to G\H.
(Color figure online)

We say P is an alternating path of type III if C1 � S2, Ci � S3 for all
i = 2, . . . , k − 1 and Ck � S� with � ≥ 4, see also Fig. 6 (left).

Fig. 6. Alternating path of type III. Black edges belong to H, gray edges to G\H.
(Color figure online)

46 M. Buchem et al.

If an alternating path of type II (III) exists in the star forest, then there is
no feasible II-coloring (A2, B2) (III-coloring (A3, B3)), as B2 (B3) must contain
all nodes of the first star C1, and hence also the nodes of all intermediate stars
leading to adjacent vertices v2k−3 ∈ B2 (B3) and v2k−2 ∈ A2 (A3). However,
an alternating path can be removed by swapping edges along it; this operation
maintains the leaves of the star forest, see Figs. 5 and 6 (right).

Observation 6. Let H = (V,E′) be a star forest of G containing an alternating
path P of type II or III. Then, H ′ := (V,E′ΔP) is a star forest with the same
set of leaves as H, where Δ denotes the symmetric difference.

Algorithm 1 computes a star forest and I,II,III-colorings in polynomial time.

Lemma 7. Algorithm 1 returns a star forest H of G and I-,II- and III- colorings
A1, (A2, B2) and (A3, B3) of (G,H), respectively, in time polynomial in G.

Proof. We first show that Algorithm 1 is well-defined (specifically line 7) and
that the graph H, defined in line 16, is a star forest. Let M be a maximum
matching and I be a maximum independent set of G. Both can be found in
polynomial time using the maximum flow algorithm to find a maximum match-
ing in bipartite graphs [34, Theorem 10.5]. Observe that the complement of a
maximum independent set is a minimum vertex cover U := V \I. By Kőnig’s
Theorem [32], it holds that |U | = |M |. In particular, every edge in M contains
exactly one vertex of U and every vertex in V ′ := V \ ⋃

e∈M e is not contained in
U . Therefore, for every v ∈ V ′, there exists u ∈ U such that {u, v} ∈ E, i.e., line
7 in Phase 1 is well-defined. By Lemma 6, modifying the star forest (V,E′) along
an alternating path in Phase 2 and 3 results again in a star forest. It remains to
show that (V,E′) is a star forest at the end of Phase 1. To this end, note that
every edge of E′ is incident to exactly one vertex u ∈ U . Thus, every vertex in
U is the center of a star (on at least 2 vertices).

For the runtime, it is important to observe that in every iteration of Phase 2
(Phase 3), some S1 (S2) is removed and no new S1 (S2) is created. Therefore,
the number of iterations in Phase 2 (Phase 3) is bounded by the number of S1’s
(S2’s) before Phase 2 (Phase 3). An alternating path of type II (type III) can
also be found in polynomial time by using BFS starting from a fixed S1 (S2).
Because Phase 4 clearly runs in polynomial time, Algorithm 1 does as well.

Finally, we prove that Phase 4 computes valid colorings. Here, we exploit the
fact that no alternating path of type II is created in Phase 3 (Lemma 16). Thus,
after Phase 3, there exists no alternating path (of any type).

By definition, A1 := I is a maximum independent set of G. We argue that
A1 is also an maximum 1-IS of H. Note that while U constitutes the centers of
the stars, V \U = I = A1 are the leaves of the stars after Phase 1. Hence the
claim is true after Phase 1. Lemma 6 ensures that this property is maintained
in Phase 2 and 3. Hence, A1 is a I-coloring.

Scheduling with Machine Conflicts 47

For the type II-coloring, the algorithm ensures that A2 contains the leaves
of all S� with � ≥ 3 and that B2 contains all vertices of S1. Hence, we only need
to pay attention to S2’s. The algorithm inserts the leaves of stars S2 into A2 if
their center is adjacent to a vertex in A2, as long as it is possible. The vertices
of all remaining S2’s are inserted into B2. Thus, the properties (i), (ii) and (iii)
of a II-coloring are fulfilled by (A2, B2). It only remains to show that no vertex
of A2 is adjacent to another vertex of A2 ∪ B2 in G. Because A2 ⊂ I, no two
vertices in A2 are adjacent in G. Suppose there is a vertex a ∈ A2 adjacent in G
to a vertex b ∈ B2. Let Sa and Sb be the star containing a and b, respectively.
By construction a is a leaf of Sa. Moreover, b ∈ U ; otherwise a, b ∈ A1, a
contradiction to the fact that A1 is an independent set. If Sb � S2, then the
center b is adjacent to a ∈ A2, and the algorithm ensures that the leaves of Sb

are contained in A2, and hence, b /∈ B2. Thus, Sb � S1.
If Sa � S�, � ≥ 3, then there exists an alternating path of type II starting in

b and ending in the center of Sa, a contradiction.
If Sa � S2, the fact a ∈ A2 implies that there exists a star S�, � ≥ 2, with a

leaf adjacent to the center of Sa. If � = 2, there exists a further star whose leaf
is adjacent to the considered star. Repeating this argument, the containment of
a ∈ A2 can be traced back to a star S�, � ≥ 3, and yields an alternating path of
type II, a contradiction.

With arguments similar to the above, (A3, B3) is a III-coloring; otherwise
we find an alternating path of type III. Specifically, one can show that vertex a
belongs to a star S2 and b to a star S3. ��

Finally, Theorem 4 follows from Lemmas 1, 5 and 7.

4 Future Directions

Various interesting avenues remain open for future research. In particular, the
investigation of graph classes capturing geometric information is of special inter-
est for applications in which spatial proximity causes machines conflicts. Addi-
tionally, allowing for preemption constitutes an interesting direction.

48 M. Buchem et al.

Algorithm 1. Computing a star forest and I, II, III-colorings.
1: Input: Connected bipartite graph G = (V, E) with |V | ≥ 2.
2: Output: Star forest H and I,II,III-colorings A1, (A2, B2), (A3, B3).

Phase 1 – Initial star forest

3: Compute a maximum matching M and a maximum independent set I of G
4: Set U := V \I (vertex cover).
5: Set E′ := M and V ′ := V \ ⋃

e∈M e.
6: while ∃ v ∈ V ′ do
7: Find u ∈ U such that {u, v} ∈ E.
8: Add {u, v} to E′ and delete v from V ′.
9: end while

Phase 2 – Removing alternating paths of type II

10: while ∃ alternating path P of type II do
11: E′ = E′ΔP
12: end while

Phase 3 – Removing alternating paths of type III

13: while ∃ alternating path P of type III do
14: E′ = E′ΔP
15: end while

Phase 4 – Computing the colorings

16: H := (V, E′)
17: A1 := I
18: For each S� in H with � ≥ 3, add leaves of S� to A2.
19: For each S1 in H, add vertices of S1 to B2.
20: while ∃ S2 in H such that its center is adjacent to a vertex of A2 in G do
21: Add leaves of S2 to A2.
22: end while
23: For each S2 in H with V (S2) ∩ A2 = ∅, add vertices of S2 to B2.
24: For each S� in H with � ≥ 4, add leaves of S� to A3.
25: For each S� in H with � ∈ {1, 2}, add vertices of S� to B3.
26: while ∃ some S3 in H such that center v of S3 is adjacent to some w ∈ A3 in G

do
27: Add leaves of S3 to A3.
28: end while
29: For each S3 in H with V (S3) ∩ A3 = ∅, add vertices of all S3 to B3.
30: return H, A1, (A2, B2), (A3, B3)

5 Appendix I – Details for Sect. 2

All theorems in Sect. 2 are divided into two cases: either all jobs have long
blocking times (max{↼

b ,
⇀

b } > p) or short blocking times (max{↼

b ,
⇀

b } ≤ p). We
split the proofs up according to the relation between the parameters and present
the results in two subsections. Specifically, Theorem 1 follows from Theorem 5

Scheduling with Machine Conflicts 49

and Theorem 8. Theorem 2 follows from Theorem 6 and Theorem 9. Theorem 3
follows from Theorem 7 and Theorem 10. Throughout the remainder, we denote
the optimal makespan of a given instance by opt.

5.1 Long Blocking Times

In this subsection, we consider smc-Id where jobs have long blocking times,
i.e., it holds max{↼

b ,
⇀

b } > p. These long blocking times lead to so-called basic
schedules in which jobs on conflicting machines do not run in parallel.

Basic Schedules. A schedule Π is basic, if for every edge ii′ ∈ E and for every
pair of jobs j and j′ assigned to i and i′, respectively, their system times are
non-overlapping, i.e., SΠ

j ≤ SΠ
j′ implies CΠ

j ≤ SΠ
j′ .

The following lemma allows us to focus on basic schedules.

Lemma 8. For an instance of smc-Id, every schedule Π is basic if

(max{↼

b ,
⇀

b } > p).

Proof. Suppose for the sake of a contradiction that there exists two jobs j and j′

assigned to machines i and i′, respectively, with ii′ ∈ E such that j′ starts while
j is processed. Because their blocking times cannot overlap, we also know that
j′ starts after the first blocking time of j and the first blocking time of j′ ends
before the second blocking time of j starts, see Fig. 7. Consequently,

↼

bj′ ≤ pj .
Moreover, pj′ ≥ ⇀

bj if j′ ends after j.

pjj

j′ pj′

Fig. 7. Illustration of the proof of Lemma 8.

Because all jobs have the same parameters, we obtain the contradiction
↼

b =
↼

bj′ ≤ pj = p and p = pj′ ≥ ⇀

bj =
⇀

b . ��
In the following, we present the proof of Theorem 1 for the case of long block-

ing times. To this end, for instances of smc-Id we denote by α1 the cardinality
of a maximum independent set of G.

Theorem 5 [Theorem 1 for long blocking times]. Unless P = NP, smc-Id
where

↼

b , p,
⇀

b are fixed and max{↼

b ,
⇀

b } > p holds does not admit a O(m1−ε)-
approximation for any ε > 0.

Proof. We restrict our attention to instances consisting of n = α1 jobs and for
the sake of simplicity let q =

↼

b + p +
⇀

b = 1 by scaling. By Lemma 8, schedules
for smc-Id with max{↼

b ,
⇀

b } > p are basic. Clearly, the optimum makespan opt

50 M. Buchem et al.

is 1 because q = 1. Suppose for some constant κ > 0 there exists a (κm1−ε)-
approximation algorithm for ε > 0 and let Π denote its schedule. Moreover,
let β denote the maximum number of machines processing jobs in parallel in
Π at any point in time. As we have at most n distinct starting times in Π we
can compute β in polynomial time. Because Π is basic, we can transform Π
into a new schedule Π ′ that processes all jobs non-idling on β machines without
increasing the makespan. Hence, we obtain ‖Π‖ ≥ 	n/β
 ≥ n/β. This fact together
with the assumption ‖Π‖ ≤ κm1−ε ·opt = κm1−ε yields β ≥ n/‖Π‖ ≥ n/κm1−ε =
1/κm1−ε · α1. In other words, the (κm1−ε)-approximation algorithm implies an
(1/κ · mε−1)-approximation algorithm for computing a maximum 1-IS for every
graph G; a contradiction [24,42]. ��

We now present the proofs of Theorems 2 and 3 for long blocking times,
respectively.

Theorem 6 [Theorem 2 for long blocking times]. Let G be a graph. If
max{↼

b ,
⇀

b } > p and we are given a 1-IS of G, then an optimal schedule of
smc-Id can be computed in polynomial time.

Proof. Let Π be an optimal schedule for smc-Id with max{↼

b ,
⇀

b } > p. By Lemma
8, Π is basic, hence, at any point in time at most α1 jobs are running. Therefore,
we can modify the job-to-machine assignment of Π such that all jobs are pro-
cessed on a maximum 1-IS while maintaining the starting times of the jobs. As
we did not increase the makespan, we have an optimal schedule where all jobs are
assigned to a maximum 1-IS. Because all jobs are identical, evenly distributing
all jobs over the machines yields an optimal schedule. ��
Theorem 7 [Theorem 3 for long blocking times]. Let G be a graph. If
max{↼

b ,
⇀

b } > p and we are given a 1/γ-approximate 1-IS of G, then smc-Id
allows for a 	γ
-approximation.

Proof. Let I denote the given 1/γ-approximate 1-IS, i.e., |I| ≥ α1/γ. Without loss
of generality we assume q =

↼

b + p +
⇀

b = 1. An optimal schedule distributes all
jobs evenly over a maximum 1-IS, i.e., we have opt = 	n/α1
 as q = 1. Since each
system time is 1, we can find a schedule Π with makespan ‖Π‖ = 	n/|I|
 · q ≤
	γ·n/α1
 ≤ 	γ
 · 	n/α1
 = 	γ
 · opt by distributing all jobs evenly on I. ��

5.2 Short Blocking Times

In this subsection, we consider smc-Id where jobs have short blocking times,
i.e., it holds max{↼

b ,
⇀

b } ≤ p. By symmetry, we assume that
↼

b ≥ ⇀

b and hence,
we write 0 <

⇀

b ≤ ↼

b ≤ p. We first introduce a generalized notion of independent
sets.

(Maximum) Induced c-Colorable Subgraph. For a graph G = (V,E) and
c ∈ N≥1, a maximum induced c-colorable subgraph, or short maximum c-IS, of G
is a set of c disjoint independent sets I1, . . . , Ic ⊆ V whose union has maximum
cardinality. Clearly, a 1-IS is an independent set. Moreover, the cardinality of a

Scheduling with Machine Conflicts 51

maximum c-IS is defined as the cardinality of the union of I1, . . . , Ic. We denote
the cardinality of a maximum c-IS by αc. These c-ISs can be used to obtain
useful partial schedules.

c-Pattern. Let c ∈ N≥1 with c ≤ �p/↼
b� + 1 and let I = (I1, I2, . . . , Ic) be a

c-tuple of disjoint independent sets of G. Recall that q :=
↼

b + p +
⇀

b denotes
the system time. A partial schedule of length q + (c − 1) · ↼

b starting at time t is
called a c-pattern on I if on each machine i in Ik with k ∈ {1, . . . , c}, there is
one job starting at time t + (k − 1)

↼

b .
In order to show connections between conflict-free schedules and c-ISs,

we extract a c-IS from a conflict-free schedule. We say a job j blocks a
time t in schedule Π if one of its blocking times contains t, i.e., t ∈(
(SΠ

j , SΠ
j +

↼

b) ∪ (CΠ
j − ⇀

b , CΠ
j)

)
. For a schedule Π, we define the quantity

βΠ
c := max

t1<...<tc

{∣∣∣∣∣
c⋃

k=1

{i ∈ V : i processes a job in Π which blocks time tk}
∣∣∣∣∣
}

.

Observe that for each time t the machines which process a job blocking time t
form an 1-IS, because Π is conflict-free. Hence, βΠ

c corresponds to the cardinality
of a c-IS, since machines are not counted more than once. It is easy to see that
βΠ

c can be computed in polynomial time for a constant c.

Lemma 9. For a schedule Π with n jobs and a constant c, βΠ
c can be computed

in time polynomial in n.

Proof. The schedule has 4n event times, namely the starting time of the blocking
times and the processing time and its completion time for each job. For some
point in time t between every two consecutive event points, we count the number
of machines processing a blocking interval. By definition of βΠ

c , it suffices to check
O(nc) tuples. ��

The definition of βΠ
c helps us to bound the makespan of a schedule Π from

below stated in Lemma 12. To this end, we first give an upper bound on the
number of jobs starting within an interval of length λ which is defined as follows.
For instances of smc-Id with 0 <

⇀

b ≤ ↼

b ≤ p, we define

k := �p/↼
b� and λ := (k + 1)

↼

b +

{
⇀

b if p/↼
b ∈ N

0 otherwise.

Lemma 10. For every schedule Π of an instance smc-Id with 0 <
⇀

b ≤ ↼

b ≤ p
and every time t ≥ 0, the number of jobs starting within the interval I := [t, t+λ)
is at most βΠ

k+1.

Proof. Because I has length λ ≤ q and is half-open, at most one job starts on
each machine within I. We partition the interval I into an (possibly empty)
interval I0 (left-closed, right-open) of length λ − (k + 1)

⇀

b (evaluating to
⇀

b if
p/↼

b ∈ N and to 0 otherwise) and k + 1 disjoint (left-closed, right-open) intervals

52 M. Buchem et al.

I1, . . . , Ik+1, each of length
↼

b . Clearly, the length of the intervals I0, . . . , Ik+1

add to λ. By V� we denote the set of machines that have a job starting in I�. For
each �, the jobs processed on a machine in V� block a point in time arbitrarily
close to the right end of I�, see Fig. 8 (left). Thus, all V�’s are independent sets.

I0 I1 . . . Ik+1 I0 I1 . . . Ik+1

Fig. 8. Illustration for the proof of Lemma 10: (left) two jobs starting in I1 and (right)
a job starting in I0 and a job starting in Ik+1.

Additionally, we show that V0 ∪ Vk+1 is an independent set. If p/↼
b /∈ N, then

V0 = ∅. It thus remains to consider the case p/↼
b ∈ N. Let t′ be a point in time

arbitrarily close to the right end of interval I. The second blocking time of job j
processed on a machine in V0 starts in interval [t + q − ⇀

b , t + q), and thus starts
before t+ q and ends not before t+ q. Hence t′ is blocked by the second blocking
time of j. Additionally, observe that t′ is blocked by the first blocking time of
every job processed on a machine in Vk+1, see also Fig. 8 (right). Consequently,
each V� and V0 ∪Vk+1 are independent sets and thus, the number of jobs can be
bounded from above by βΠ

k+1. ��
Next, we show that an upper bound on the number of jobs starting within

an interval of a specific lengths implies a lower bound on the makespan.

Lemma 11. Let Π be a schedule for an instance smc-Id with 0 <
⇀

b ≤ ↼

b ≤ p
such that for some integer β, in every interval of length L ≤ q at most β jobs
start. Then, for system timeq :=

↼

b + p +
⇀

b , it holds that

‖Π‖ ≥ L�n/β� +

{
0 if β divides n

q otherwise.

Proof. We divide Π into intervals of length L starting with 0. By assumption, at
most β jobs start in each interval. Hence, the number of these intervals (where
some job is processed) is at least �n/β�. Moreover, if β does not divide n, then
at least some job (of length q) starts after time L�n/β� + q. ��

Lemma 10 and 11 immediately imply a lower bound on the makespan of any
schedule.

Lemma 12. For every schedule Π for an instance of smc-Id with 0 <
⇀

b ≤
↼

b ≤ p, the makespan is at least ‖Π‖ ≥ λ · 	n/βΠ
k+1
. In particular, the optimal

makespan is bounded from below by opt ≥ λ · 	n/αk+1
.

Scheduling with Machine Conflicts 53

Using Lemma 12, we prove Theorem 1 for short blocking times.

Theorem 8 [Theorem 1 for short blocking times]. Unless P = NP, smc-Id
where

↼

b , p,
⇀

b are fixed and max{↼

b ,
⇀

b } ≤ p holds does not admit a O(m1−ε)-
approximation for any ε > 0.

Proof. Suppose that for some κ > 0 and some ε > 0 there exists a (κm1−ε)-
approximation algorithm A. We assume

↼

b ≥ ⇀

b and define k := �p/↼
b� and λ

as above. For an instance of smc-Id with short blocking times and n ≥ αk+1,
we consider the schedule Π computed by A. On the one hand, because A is a
(κm1−ε)-approximation, Π has makespan

‖Π‖ ≤ (κm1−ε) · opt.

On the other hand, by Lemma 12, we have

‖Π‖ ≥ λ · 	n/βΠ
k+1
 ≥ λn · 1/βΠ

k+1.

Moreover, we obtain a feasible schedule by repeatedly using (k + 1)-patterns
on a maximum (k + 1)-IS, while leaving the other machines idle. Recall that a
(k + 1)-pattern has length (q + k

↼

b) and schedules αk+1 jobs. This yields the
upper bound

opt ≤ (q + k
↼

b) · 	n/αk+1
 ≤ 2(q + k
↼

b) · n/αk+1,

where the last inequality uses the fact n/αk+1 ≥ 1 and thus 	n/αk+1
 ≤ 2(n/αk+1).
Altogether, we obtain

βΠ
k+1 ≥ λn

‖Π‖ ≥ λn

κm1−ε · opt ≥ 1
κm1−ε

· λ

2(q + k
↼

b)
· αk+1,

where λ/q+k
↼
b is a constant ≤ 1 since λ ≤ q. By Lemma 9, we can compute a

(k+1)-IS from Π of size βΠ
k+1 in polynomial time and thus we obtain a O(mε−1)-

approximation for computing a maximum (k +1)-IS; a contradiction [24,36,42].
��

We now provide the proofs of Theorems 2 and 3 for short blocking times.

Theorem 9 [Theorem 2 for short blocking times]. If 0 <
⇀

b ≤ ↼

b ≤ p and we
are given a maximum (�p/↼

b� + 1)-IS of G, then smc-Id allows for a (q + k
↼

b)/λ-
approximation, with (q + k

↼

b)/λ < 2 + 1/(k+1) < 2.5 and if p/↼
b ∈ N, we even get

(q + k
↼

b)/λ < 1 + p/q < 2.

Proof. We define a schedule Π consisting of 	n/αk+1
 many (k+1)-patterns on a
maximum (k+1)-IS of G, while leaving all other machines idle. Π has makespan
‖Π‖ ≤ (q + k

↼

b) · 	n/αk+1
. By Lemma 12, it holds that opt ≥ λ · 	n/αk+1
. We
obtain

‖Π‖
opt

≤ q + k
↼
b

λ
=

⎧
⎨

⎩

q+p
q

= 1 + p
q

< 2 if p/
↼
b ∈ N,

(k+1)
↼
b+p+

⇀
b

(k+1)
↼
b

= 1 + p

(k+1)
↼
b
+

⇀
b

(k+1)
↼
b

< 2 + 1
k+1

≤ 2.5 if p/
↼
b /∈ N.

��

54 M. Buchem et al.

Theorem 10 [Theorem 3 for short blocking times]. If 0 <
⇀

b ≤ ↼

b ≤ p and
we are given a 1/γ-approximate (�p/↼

b� + 1)-IS of G, then smc-Id allows for a
2γ/λ · (q + k

↼

b)-approximation, with 2γ/λ · (q + k
↼

b) < 5γ. If p/↼
b ∈ N, we get

2γ/λ · (q + k
↼

b) < 4γ.

Proof. Let I be the given (k+1)-IS of size β ≥ αk+1/γ. We construct a schedule Π
by using 	n/β
 many (k+1)-patterns on I which has makespan ‖Π‖ ≤ (q+k

↼

b) ·
	n/β
. Moreover, Lemma 12 implies opt ≥ λ · 	n/αk+1
 ≥ λ · n/αk+1. If n ≤ β,
then also n ≤ αk+1, implying that	n/β
 = 	n/αk+1
 = 1. Thus, we obtain

‖Π‖
opt

≤ (q + k
↼

b) · 	n/β

λ · 	n/αk+1
 =

(q + k
↼

b)
λ

.

Hence, following the same steps as in the proof of Theorem 9, we obtain an
upper bound on the performance guarantee of 2 if p/↼

b ∈ N and 2.5 if p/↼
b /∈ N. If

n > β, we obtain 	n/β
 ≤ 2 · n/β ≤ 2γ · n/αk+1. Consequently, it holds

‖Π‖
opt

≤ (q + k
↼

b) · 2γ · n/αk+1

λ · n/αk+1

≤ 2γ · (q + k
↼

b)
λ

.

Again, following the same steps as in the proof of Theorem 9, we obtain an upper
bound on the performance guarantee of 4γ if p/↼

b ∈ N and 5γ if p/↼
b /∈ N. ��

6 Appendix II – Details for Sect. 3

In the following we provide omitted proofs of Sect. 3.

Lemma 1. For every n, an optimal schedule for smc-Unit(Km, n) can be com-
puted in time linear in log n. In particular, for m ≥ 2, it coincides with an
optimal schedule for K2 of makespan 4�n/2� + 3(n mod 2).

Proof. Let Π be an optimal schedule of smc-Unit(Km, n). Note that for each
point in time t, the set of machines processing a job at time t induces a K1 or
K2. Moreover, all vertices in Km, m ≥ 2, play the same role and hence we may
shift all jobs to the same two vertices. Thus, we may reduce our attention to
smc-Unit(K2, n). It is easy to check that two jobs are optimally processed in
time 4. This implies the claim. ��

The next lemma shows that we can restrict to schedules with integral starting
times.

Lemma 13. If
↼

bj, pj,
⇀

bj are integral for all j ∈ J , every feasible schedule Π
can be transformed into a feasible schedule Π∗ such that the starting time of each
job is intergral and the makespan does not increase, i.e., ‖Π∗‖ ≤ ‖Π‖.

Scheduling with Machine Conflicts 55

Proof. Let SΠ
j denote the starting time for each job j ∈ J . We define Π∗ by

SΠ∗
j := �SΠ

j � for each job j. It remains to show that Π∗ is feasible. Let j and
j′ be two jobs such that two of their blocking times b and b′ intersect in Π∗. By
integrality of Π∗ and the blocking times, they intersect in at least one time unit.

Without loss of generality, we assume that b′ does not start before b in Π.
With slight abuse of notation, SΠ

b denotes the starting time of the blocking
time b in Π. Then, SΠ

b′ − SΠ
b and SΠ∗

b′ − SΠ∗
b differ by strictly less than 1.

Hence, if they intersect in at least 1 time unit in Π∗, then they also intersect
in Π. Therefore, by feasibility of Π, j and j′ are scheduled on conflict-free
machines. ��
Corollary 1. For every star S and every n, an optimal schedule for smc-
Unit(S, n) can be computed in time linear in log n and |S|.

Specifically, for every S�, there exists X ∈ {A,B} such that an optimal sched-
ule has at most 2 X-patterns, i.e., an optimal schedule has makespan

min
k=0,1,2

{
4
⌈

n − k�

� + 1

⌉
+ 3k, 3

⌈
n − k(� + 1)

�

⌉
+ 4k

}
, (2)

where 	·
 denotes the usual ceiling function; however, for negative reals it eval-
uates to 0.

Proof. By Lemma 3, there exists an optimal AB-schedule. For a star S�, an A-
pattern processes � jobs in time 3 and a B-pattern processes (� + 1) jobs in time
4. An AB-schedule for at least n jobs with exactly k A-patterns has a makespan
of 4	n−k�

�+1
 + 3k. Similarly, an AB-schedule for at least n jobs with exactly k

B-patterns has a makespan of 3	n−k(�+1)
�
 + 4k.

For � ≤ 2, an optimal schedule contains at most 2 A-patterns. While 3 A-
patterns process 3� jobs in time 9, 2 B-pattern process 2(�+1) ≥ 3� jobs in time
8. Thus, any 3 A-patterns can be replaced by 2 B-patterns.

For � ≥ 3, an optimal schedule contains at most 2 B-patterns: While 3 B-
patterns process 3(� + 1) jobs in time 12, 4 A-patterns finish 4� ≥ 3(� + 1) jobs
in time 12. Thus, any 3 B-patterns can be replaced by 4 A patterns.

Therefore, for each star we only have to compare at most three different
schedules with k = 0, 1, 2 A- or B-patterns, respectively. Taking one with mini-
mum makespan induces an optimal solution. ��

We next present the full proof of Lemma 5.

Lemma 5. Let H be a star forest of a connected bipartite graph G on at least
two vertices. Given a I-coloring A1, a II-coloring (A2, B2) and a III-coloring
(A3, B3) of (G,H), there exists a polynomial time algorithm to compute an opti-
mal schedule for smc-Unit(G,n).

Proof. Let Π ′ be an optimal schedule for smc-Unit(G,n). By Lemma 3, there
exists an optimal AB-schedule Π for smc-Unit(H,n). Because H is a subgraph
of G, we have ‖Π‖ ≤ ‖Π ′‖. First, we show how to solve smc-Unit(G,n) for
small optimal makespan values.

56 M. Buchem et al.

Table 1. AB-schedules on the stars of H based on Corollary 1 and modification *. The
number before A and B indicates the number of A- and B-patterns.

‖Π‖ S1 S2 S3 S�, � ≥ 4

1 – – – –

2 – – – –

3 A A A A

4 B B B B

5 – – – –

6 2A* 2A 2A 2A

7 A, B A, B A, B A, B

8 2B 2B 2B 2B

9 2B 3A or 2B* 3A 3A

10 2A, B* 2A, B 2A, B 2A, B

11 A, 2B A, 2B A, 2B A, 2B

12 3B 3B 4A or 3B 4A

13 B, 2B B, (3A or 2B)* B, 3A B, 3A

14 2A, 2B* 2A, 2B 2A, 2B 2A, 2B

15 A, 3B A, 3B A, (4A or 3B) A, 4A

16 B, 3B B, 3B B, (4A or 3B) B, 4A

17 2B, 2B 2B, (3A or 2B)* 2B, 3A 2B, 3A

18 2A, 3B* 2A, 3B 2A, (4A or 3B) 2A, 4A

19 A, B, 3B A, B, 3B A, B, (4A or 3B) A, B, 4A

20 2B, 3B 2B, 3B 2B, (4A or 3B) 2B, 4A

Claim 14. If ‖Π‖ ≤ 20, then there exists an optimal AB-schedule Π∗ on H
that is feasible for G (according to Table 1).

To prove this claim, observe that ‖Π‖ ≥ q = 3 and that there is no AB-
schedule with ‖Π‖ = 5. We first show how to define a schedule Π∗ of makespan
‖Π‖ according to Table 1 that has as many jobs as Π. Afterwards, we show
that Π∗ is feasible with respect to G. To this end, we first concentrate on the
four types of components in H. For C ∈ {S1, S2, S3, S�≥4}, let LC denote the
set of all makespan (of at most 20) from schedules obtained by Corollary 1. For
C ∈ {S1, S2, S3, S�≥4} and ‖Π‖ ∈ [20]\{1, 2, 5}, we use the optimal AB-schedule
with makespan ‖Π‖ (or the maximum value in LC that is ≤ ‖Π‖). However, we
modify some schedules in order to guarantee feasibility later: modified entries
are marked by an asterisk in Table 1.

For S1 and for ‖Π‖ ≡ 2 (mod 4), we use 2 A-patterns and (�‖Π‖/4� − 1)
B-patterns instead of �‖Π‖/4� B-patterns. Since 2 A-patterns and 1 B-pattern
differ in length 2, the modified schedule finishes within ‖Π‖. It also schedules at
least as many jobs as Π, because 1 A-pattern contains one job while 1 B-pattern
contains two jobs.

Scheduling with Machine Conflicts 57

For S2 and for ‖Π‖ ≡ 1 (mod 4), we also allow to schedule 3 A-patterns and
�‖Π‖/4�−2 B-patterns besides the optimal schedule using �‖Π‖/4� B-patterns. As
3 A-patterns and 2 B-patterns differ in length 1, the modified schedule finishes
within ‖Π‖. Moreover, both 3 A-patterns and 2 B-patterns contain six jobs.

Table 1 displays the resulting patterns on the components. The schedule Π∗ is
constructed as follows: Each A-pattern is scheduled on A1, each B-pattern on V ,
3 A-patterns on A2, 2 B-patterns on B2, 4 A-patterns on A3, and 3 B-patterns
on B3. It remains to show that scheduling according to Table 1 is feasible with
respect to G.

By definition of A1, scheduling an A-pattern on A1 yields a feasible schedule
for smc-Unit(G,n). This is used for the A-patterns in the cases where ‖Π‖ ∈
{3, 6, 10, 11, 14, 15, 18, 19}.

Because G is bipartite, a B-pattern can be scheduled on V . This is used for
the B-patterns in the cases where ‖Π‖ ∈ {4, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20}.

Because (A2, B2) is a II-coloring, scheduling 3 A-patterns on A2 and 2 B-
patterns on B2 is feasible. This is used for the case where ‖Π‖ ∈ {9, 13, 17}.

Because (A3, B3) is a III-coloring, scheduling 4 A-patterns on A3 and 3 B-
patterns on B3 is feasible. We use this whenever ‖Π‖ ∈ {12, 15, 16, 18, 19, 20}.
This proves Claim 14.

Claim 15. There exists an optimal schedule that is comprised of blocks of length
12 following row 12 of Table 1 and one rest block of length at most 20 following
Table 1.

By Claim 14, we need to show Claim 15 for ‖Π‖ ≥ 21. We may assume
that for any two different components of H, their makespans in Π differ by at
most 3. Suppose there exists components C1 and C2 such that the makespan
of C1 exceeds the makespan of C2 by at least 4. Deleting a last job from C1

and inserting it after the last job of C2, the makespan difference decreases. As a
consequence, the makespan in Π on each component is at least 18. This implies
that Π schedules at least 4 A-patterns or 3 B-patterns both of length 12 on
each connected component: Let C be a component of H. If Π has at most 3
A-patterns and at most 2 B-patterns on C, then the makespan on C is at most
3 · 3 + 2 · 4 = 17. A contradiction. Therefore, if ‖Π‖ ≥ 21, we modify Π by
scheduling the 4 A-patterns on A3 and the 3 B-patterns on B3. By definition of
a III-coloring of (A3, B3) this yields a feasible subschedule with respect to G. We
repeat this procedure until the makespan of the remaining patterns is at most
20. This proves Claim 15.

We can compute the schedule obtained by Table 1 for each possible value r ∈
[20]\{1, 2, 5} on each connected component using the given I-,II- and III-colorings
and filling it up with blocks of 12 following row 12 of Table 1. By Lemma 15, the
schedule with minimum makespan is an optimal schedule. ��

In the following, we complete the proof of Lemma 7 by showing that modi-
fying a star forest which does not contain any alternating paths of type II along
an alternating path of type III will create a new star forest which also does not
contain any alternating path of type II.

58 M. Buchem et al.

Lemma 16. Let H = (V,E′) be a star forest of G without any alternating paths
of type II. Let P be an alternating path P of type III. Then the star forest
H ′ = (V,E′ΔP) contains no alternating paths of type II.

Proof. Let C1, . . . Ck be the stars of the alternating path P in H and let C ′
1, . . . C

′
k

denote the corresponding stars in H ′. Observe that C ′
i � Ci � S3 for all i ∈

{2, . . . , k − 1}. Moreover, C ′
1 = S3 and C ′

k = S� for some � ≥ 3. For the purpose
of a contradiction, suppose that H ′ contains an alternating path P2 of type II.
Clearly, P2 and P intersect; otherwise P2 is also contained in H. Specifically,
P2 ends in some C ′

i with i ∈ {1, . . . , k}. If i > 1, then P2 and P share exactly
the center of C ′

i and thus H contains P2 as well. A contradiction. If P2 ends in
C ′

1, then H contains an alternating path of type II ending in C2 that goes via
C1 � S2. Again, a contradiction. ��

References

1. Abdekhodaee, A.H., Wirth, A.: Scheduling parallel machines with a single server:
some solvable cases and heuristics. Comput. Oper. Res. 29(3), 295–315 (2002)

2. Abdekhodaee, A.H., Wirth, A., Gan, H.S.: Equal processing and equal setup time
cases of scheduling parallel machines with a single server. Comput. Oper. Res.
31(11), 1867–1889 (2004)

3. Abdekhodaee, A.H., Wirth, A., Gan, H.S.: Scheduling two parallel machines with
a single server: the general case. Comput. Oper. Res. 33(4), 994–1009 (2006)

4. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing on parallel machines. J. Sched. 1(1), 55–66 (1998)

5. Baker, B.S., Coffman, E.G., Jr.: Mutual exclusion scheduling. Theoret. Comput.
Sci. 162(2), 225–243 (1996)

6. Bodlaender, H.L., Fomin, F.V.: Equitable colorings of bounded treewidth graphs.
Theoret. Comput. Sci. 349(1), 22–30 (2005)

7. Bodlaender, H.L., Jansen, K.: On the complexity of scheduling incompatible jobs
with unit-times. In: Borzyszkowski, A.M., Soko�lowski, S. (eds.) MFCS 1993. LNCS,
vol. 711, pp. 291–300. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57182-5 21

8. Bodlaender, H.L., Jansen, K.: Restrictions of graph partition problems. Part I.
Theor. Comput. Sci. 148(1), 93–109 (1995)

9. Bodlaender, H.L., Jansen, K., Woeginger, G.J.: Scheduling with incompatible jobs.
Discret. Appl. Math. 55(3), 219–232 (1994)

10. Brucker, P., Dhaenens-Flipo, C., Knust, S., Kravchenko, S.A., Werner, F.: Com-
plexity results for parallel machine problems with a single server. J. Sched. 5(6),
429–457 (2002)

11. Buchem, M., Kleist, L., Schmidt genannt Waldschmidt, D.: Scheduling with
machine conflicts. CoRR abs/2102.08231 (2021). https://arxiv.org/abs/2102.
08231

12. Chen, J.J., Hahn, T., Hoeksma, R., Megow, N., von der Brüggen, G.: Scheduling
self-suspending tasks: new and old results. In: Proceedings of the 31st Euromicro
Conference on Real-Time Systems (2019)

13. Chen, L., Jansen, K., Zhang, G.: On the optimality of approximation schemes for
the classical scheduling problem. In: Proceedings of the 25th ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 657–668 (2013)

https://doi.org/10.1007/3-540-57182-5_21
https://doi.org/10.1007/3-540-57182-5_21
https://arxiv.org/abs/2102.08231
https://arxiv.org/abs/2102.08231

Scheduling with Machine Conflicts 59

14. Chrobak, M., Csirik, J., Imreh, C., Noga, J., Sgall, J., Woeginger, G.J.: The buffer
minimization problem for multiprocessor scheduling with conflicts. In: Orejas, F.,
Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 862–874.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5 70

15. Das, S., Wiese, A.: On minimizing the makespan when some jobs cannot be
assigned on the same machine. In: Proceedings of the 25th Annual European Sym-
posium on Algorithms (2017)

16. Gan, H.S., Wirth, A., Abdekhodaee, A.H.: A branch-and-price algorithm for the
general case of scheduling parallel machines with a single server. Comput. Oper.
Res. 39(9), 2242–2247 (2012)

17. Gardi, F.: Mutual exclusion scheduling with interval graphs or related classes. Part
I. Discret. Appl. Math. 157(1), 19–35 (2009)

18. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory
of NP-completeness (1979)

19. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J.
45(9), 1563–1581 (1966)

20. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17(2), 416–429 (1969)

21. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.: Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discret.
Math. 5, 287–326 (1979)

22. Hall, N.G., Potts, C.N., Sriskandarajah, C.: Parallel machine scheduling with a
common server. Discret. Appl. Math. 102(3), 223–243 (2000)

23. Hansen, P., Hertz, A., Kuplinsky, J.: Bounded vertex colorings of graphs. Discret.
Math. 111(1–3), 305–312 (1993)

24. H̊astad, J.: Clique is hard to approximate within 1- ε. Acta Math. 182(1), 105–142
(1999)

25. Hochbaum, D.S.: Various notions of approximations: good, better, best and more.
Approx. Algorithms NP-Hard Probl., 346–398 (1997)

26. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. J. ACM 34(1), 144–162 (1987)

27. Höhne, F., van Stee, R.: Buffer minimization with conflicts on a line. Theoret.
Comput. Sci. 876, 25–33 (2021)

28. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an MILP
relaxation with a constant number of integral variables. SIAM J. Discret. Math.
24(2), 457–485 (2010)

29. Jansen, K., Klein, K.M., Verschae, J.: Closing the gap for makespan scheduling via
sparsification techniques. Math. Oper. Res. 45(4), 1371–1392 (2020)

30. Jiang, Y., Zhang, Q., Hu, J., Dong, J., Ji, M.: Single-server parallel-machine
scheduling with loading and unloading times. J. Comb. Optim. 30(2), 201–213
(2014). https://doi.org/10.1007/s10878-014-9727-z

31. Kern, W., Nawijn, W.N.: Scheduling multi-operation jobs with time lags on a single
machine. In: Proceedings of the 2nd Twente Workshop on Graphs and Combina-
torial Optimization (1991)

32. Kőnig, D.: Gráfok és mátrixok. Mat. Fizikai Lapok 38, 116–119 (1931)
33. Kim, M.Y., Lee, Y.H.: MIP models and hybrid algorithm for minimizing the

makespan of parallel machines scheduling problem with a single server. Comput.
Oper. Res. 39(11), 2457–2468 (2012)

34. Korte, B.H., Vygen, J.: Combinatorial Optimization, vol. 6. Springer, Heidelberg
(2018)

https://doi.org/10.1007/3-540-48224-5_70
https://doi.org/10.1007/s10878-014-9727-z

60 M. Buchem et al.

35. Kravchenko, S.A., Werner, F.: Parallel machine scheduling problems with a single
server. Math. Comput. Model. 26(12), 1–11 (1997)

36. Lund, C., Yannakakis, M.: The approximation of maximum subgraph problems.
In: Lingas, A., Karlsson, R., Carlsson, S. (eds.) ICALP 1993. LNCS, vol. 700, pp.
40–51. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56939-1 60

37. Rajkumar, R., Sha, L., Lehoczky, J.P.: Real-time synchronization protocols for
multiprocessors. In: Proceedings of the 9th IEEE Real-Time Systems Symposium,
vol. 88, pp. 259–269 (1988)

38. Sahni, S.K.: Algorithms for scheduling independent tasks. J. ACM 23(1), 116–127
(1976)

39. Sahni, S.K.: Scheduling master-slave multiprocessor systems. IEEE Trans. Com-
put. 45(10), 1195–1199 (1996)

40. de Werra, D.: Restricted coloring models for timetabling. Discret. Math. 165, 161–
170 (1997)

41. Xie, X., Li, Y., Zhou, H., Zheng, Y.: Scheduling parallel machines with a single
server. In: Proceedings of 2012 International Conference on Measurement, Infor-
mation and Control, vol. 1, pp. 453–456. IEEE (2012)

42. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In: Proceedings of the 38th Annual ACM Symposium on
Theory of Computing, pp. 681–690 (2006)

https://doi.org/10.1007/3-540-56939-1_60

Knapsack Secretary Through Boosting

Andreas Abels1, Leon Ladewig2, Kevin Schewior3(B),
and Moritz Stinzendörfer4

1 Chair of Management Science, RWTH Aachen University, Aachen, Germany
andreas.abels@oms.rwth-aachen.de

2 Munich, Germany
leonladewig@mail.de

3 Department of Mathematics and Computer Science, University of Southern
Denmark, Odense, Denmark

kevs@sdu.dk
4 Department of Mathematics, TU Kaiserslautern, Kaiserslautern, Germany

stinzendoerfer@mathematik.uni-kl.de

Abstract. We revisit the knapsack-secretary problem (Babaioff et al.;
APPROX 2007), a generalization of the classic secretary problem in
which items have different sizes and multiple items may be selected if
their total size does not exceed the capacity B of a knapsack. Previ-
ous works show competitive ratios of 1/(10e) (Babaioff et al.), 1/8.06
(Kesselheim et al.; STOC 2014), and 1/6.65 (Albers, Khan, and Ladewig;
APPROX 2019) for the general problem but no definitive answers for the
achievable competitive ratio; the best known impossibility remains 1/e
as inherited from the classic secretary problem. In an effort to make more
qualitative progress, we take an orthogonal approach and give definitive
answers for special cases.

Our main result is on the 1-2-knapsack secretary problem, the spe-
cial case in which B = 2 and all items have sizes 1 or 2, arguably the
simplest meaningful generalization of the secretary problem towards the
knapsack secretary problem. Our algorithm is simple: It boosts the value
of size-1 items by a factor α > 1 and then uses the size-oblivious app-
roach by Albers, Khan, and Ladewig. We show by a nontrivial analy-
sis that this algorithm achieves a competitive ratio of 1/e if and only
if 1.40 � α ≤ e/(e − 1) ≈ 1.58.

Towards understanding the general case, we then consider the case
when sizes are 1 and B, and B is large. While it remains unclear if 1/e
can be achieved in that case, we show that algorithms based only on
the relative ranks of the item values can achieve precisely a competitive
ratio of 1/(e + 1). To show the impossibility, we use a non-trivial gener-
alization of the factor-revealing linear program for the secretary problem
(Buchbinder, Jain, and Singh; IPCO 2010).

Supported in part by the Independent Research Fund Denmark, Natural Sciences,
grant DFF-0135-00018B.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Chalermsook and B. Laekhanukit (Eds.): WAOA 2022, LNCS 13538, pp. 61–81, 2022.
https://doi.org/10.1007/978-3-031-18367-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18367-6_4&domain=pdf
https://doi.org/10.1007/978-3-031-18367-6_4

62 A. Abels et al.

1 Introduction

In the classic secretary problem, there is a single position to be filled, and n
candidates arrive one by one in uniformly random order. Upon arrival of any
candidate, they have to be rejected or accepted immediately and irrevocably
only based on ordinal information on the candidates seen so far, that is, their
relative ranks. The goal is to maximize the probability that the best candidate
is selected. The origin of this problem is unclear; for a discussion, we refer to
Ferguson’s survey [16]. It is well known [13,26] since the 1960s that a probability
of 1/e can be achieved by selecting the first candidate that is better than the n/e
first candidates and that this is the best-possible probability under the typical
assumption n → ∞. Many extensions of this problem have since been considered,
especially in recent years, partially due to relations to beyond-the-worst-case
analyses of online algorithms (e.g., [1,18,20]) and to mechanism design (e.g., [4,
24]).

There is extensive work on multiple-choice variants of the secretary problem.
Few of these works consider an ordinal setting [8,19,29]; the majority considers
the value setting in which each arriving candidate (or item) i is revealed along
with a value vi ∈ R≥0 and must be rejected or accepted immediately and irre-
vocably so that the set of accepted items obeys some combinatorial constraint.
The goal is to obtain an algorithm with a (strong) competitive ratio ρ, i.e., that
constructs a solution ALG such that v(ALG), the sum of values of accepted items,
is in expectation at least ρ · v(OPT) where OPT is the best solution that could
have been constructed.

Whereas the results for the standard secretary problem carry over to the
value setting, even relatively simple variants are not completely understood in
that setting. This is arguably due to the sheer amount of conceivable strategies.
For instance, the precise competitive ratio achievable in the 2-secretary problem,
the variant in which two positions are to be filled, is not known—only that
it is strictly larger than in the much-better-understood ordinal “counterpart”,
sometimes called the (2, 2)-secretary problem [8,9].

The secretary variant that has probably received most attention is the
matroid secretary problem [5], an extension of the k-secretary problem [24] (in
which k positions are to be filled) to any matroid constraint, see, e.g., the state-
of-the-art result [15,25] and the survey by Dinitz [12]. An orthogonal and also
well-known extension of k-secretary is the knapsack secretary problem in which
items additionally have sizes and the total size of accepted items must not exceed
some given capacity B [2,4,21,23,28]. While this line of work has improved the
competitive ratio from 1/(10e) to 1/6.65, no impossibility beyond 1/e has been
found. For some secretary versions, e.g., the bipartite-matching variant [22], it
is known that this ratio can in fact be matched.

Our paper may raise hope that the ratio of 1/e can in fact be matched for
knapsack secretary. First, we consider the 1–2-knapsack problem. Here, items
have sizes either 1 or 2 and the capacity B is 2. We develop a 1/e-competitive
algorithm. To us, this result is both surprising and significant because the prob-
lem generalizes both the classic secretary problem, which severely restricts the

Knapsack Secretary Through Boosting 63

set of candidate algorithms, and the not-entirely-understood 2-secretary prob-
lem. We also consider the problem with sizes either 1 or B and B large, for which
we show initial results, namely that 1/(e + 1) ± o(1) is precisely the competitive
ratio that can be achieved by ordinal algorithms. These are algorithms that only
use the relative rank of the items and disregard the actual values.

1.1 Related Work

Kleinberg [24] first considers k-secretary as introduced above, gives an algorithm
with competitive ratio 1 − Θ(1/

√
k), and shows that this ratio is asymptotically

best possible. This result is reproduced by Kesselheim et al. [23] in the more gen-
eral context of packing LPs. Buchbinder et al. [8] consider the (j, k)-secretary
problem in the ordinal setting in which j items can be selected and the goal is
to maximize the expected ratio of elements selected from the top k items. They
also state the algorithm-design problems as linear programs, which they can only
solve for small values of j and k, but Chan et al. [9] can solve them for larger val-
ues. Any guarantee for the (k, k)-secretary problem carries over to the k-secretary
problem, but Chan et al. [9] rule out the other direction. More specifically, Chan
et al.’s results include an optimal algorithm for (2, 2)-secretary with guarantee
approximately 0.489 and a (not necessarily optimal) algorithm for 2-secretary
with guarantee approximately 0.492. Albers and Ladewig [3] revisit the prob-
lem and give simple algorithms with improved (albeit non-optimal) competitive
ratios for many fixed values of k.

The knapsack secretary problem is introduced by Babaioff et al. [4] who give
a 1/(10e)-competitive algorithm, which was subsequently improved by Kessel-
heim et al. [23] to 1/8.06 and by Albers, Khan, and Ladewig [2] to 1/6.65.
Essentially all known Ω(1)-competitive algorithms for the knapsack secretary
problem are somewhat wasteful in the competitive ratio, presumably at least
partially for the sake of a simpler analysis, in that they randomize between dif-
ferent algorithms that are tailored to respective item sizes. It seems that quali-
tative progress can only be made by a more fine-grained analysis avoiding such
case distinctions.

A variant of the knapsack secretary problem that has recently been consid-
ered is the fractional variant in which an item can also be packed fractionally,
avoiding situations in which an arriving item cannot be selected at all, even
when there is space. The currently best known achievable competitive ratio is
1/4.39 [17], also achieved by a blended approach.

It is not difficult to see that no constant competitive ratio can be achieved
when the items do not arrive in random but in adversarial order, even in the unit-
value case [27]. Starting from this problem, problems in which other assumptions
than the order are relaxed are considered as well. For instance, Zhou et al. [30]
consider the version in which each item has a small size; Böckenhauer et al. [6]
and Boyar et al. [7] introduce advice and untrusted predictions, respectively, to
the problem.

Lower bounds for secretary problems in the value setting are rare. For some
related problems [10,11,14], the rich class of strategies can be handled by, for

64 A. Abels et al.

any strategy, identifying an infinite set of values (using Ramsey theory) on which
it is much better behaved. It is, however, not clear how such an approach could
be applied, e.g., for knapsack secretary since it seems one would need to control
how the values in the support are spread out, a property that is irrelevant in the
other settings.

1.2 Our Contribution

The special case 1-2-knapsack is not only arguably the simplest special case that
exhibits features of the knapsack problem distinguishing it from the matroid
secretary problem. Since the problem generalizes both the standard secretary
problem and 2-secretary, we believe that settling it in terms of the achievable
competitive ratio is also interesting per se.

A good starting point for tackling 1-2-knapsack seems to be the extended
secretary algorithm, which is 1/3.08-competitive in the slightly more general
case when all items have size larger than B/3 [2]. This algorithm simply ignores
the item sizes, samples some prefix of length cn for some optimized constant c ∈
(0, 1), and afterwards selects all items that surpass the largest value from the
sampling phase and that can still be feasibly packed. It is, however, easy to see
that this approach cannot achieve 1/e: Achieving 1/e in an instance where the
optimal solution consists of a large item requires setting c = 1/e ± o(1). The
resulting algorithm will, however, not be 1/e-competitive in an instance where
the optimal solution consists of two small items of equal value, but there are
many large items, each slightly more valuable than the individual small items,
making sure that the small items are (almost) never selected by the algorithm.
In this case, the competitive ratio of the algorithm will be essentially half the
probability that the algorithm selects a (large) item, that is, (1 − 1/e)/2 < 1/e.
We denote two instances of the above forms by I1 and I2, respectively, in the
following. Clearly, it is possible to choose c so as to balance between I1 and I2.
As a small side result, we show that a ratio of approximately 0.353 < 1/e can
be achieved that way.

The key observation leading to our 1/e-competitive algorithm is that keep-
ing c = 1/e and internally multiplying (boosting) values of small items with a
suitable constant factor α > 1 prior to running the extended secretary algorithm
may handle both I1 and I2: While this is clear for I1 when the ranking of values
does not change through boosting, a small item may overtake the most valu-
able (large) item. This however means that this small item has relatively large
(actual) value. Using that the algorithm also accepts the second-best item with
a significant probability (1/e2), we can show that, with the right choice of α, we
still extract enough value from the small and large items to cover 1/e · v(OPT).
In I2, the small items would overtake the large items, significantly improving
the expected value achieved by the algorithm; conversely, if they did not over-
take, they would not have been harmfully valuable in the first place—again with
the right choice of α. To sum up, “I1 type” instances impose an upper bound
on α, and “I2 type” instances impose a lower bound on α. We show that the
algorithm is 1/e-competitive if and only if 1.40 � α ≤ e/(e − 1) ≈ 1.58 where

Knapsack Secretary Through Boosting 65

the upper bound comes essentially from the above consideration for I1. Note
that therefore, in particular, our boosting is different from ordering the items
by their “bang for the buck” ratios.

We note that, while α-boosting seems reminiscent of β-filtering [9] (for β <
1), applying β-filtering to the extended secretary algorithm will not yield a 1/e-
competitive algorithm. The extended secretary algorithm would be adapted by
ignoring items with a value less than β times the highest value seen so far. Note
that indeed, a “I1 type” instance where all but the most valuable item have a
similar small value, one would have to choose c = 1/e ± o(1) again, independently
of β. But such an algorithm would again only be (1 − 1/e)/2-competitive on I2.

The crux of our analysis is distinguishing all possible cases beyond those
covered by I1 and I2 in a smart way. To bound the algorithm’s value in each of
these cases, we precisely characterize the probabilities with which the algorithm
selects an item depending on its size and its position in the (boosted) order of
values, significantly extending observations made by Albers and Ladewig [3].

Before tackling the general case and understanding potentially complicated
knapsack configurations, we propose considering a clean special case called 1-
B-knapsack where items have sizes either 1 or B, and B is large. One may be
tempted to think that this special case is difficult in that selecting a small item
early on may lead to a blocked knapsack and a horribly inefficient use of capacity,
e.g., because all other items are large. On the other hand, when B is large, one
can easily avoid such situations by sampling. We do not give a conclusive answer
on whether 1/e can be matched in this case, but we give some preliminary results.

Unfortunately, a competitive ratio of 1/e for 1-B-knapsack cannot be
achieved with our boosting approach. The same consideration we made for I1

earlier (for 1-2-knapsack) to get an upper bound of e/(e− 1) on α still works; in
contrast, a generalization of I2 rules out any constant boosting factor.

We then give another algorithm for 1-B knapsack which can be viewed as a
linear interpolation between the classic secretary algorithm and the algorithm
by Kleinberg [24] for k-secretary. We show that it is 1/(e + 1)-competitive. This
algorithm turns out to be ordinal, that is, its decisions only depend on the item
sizes and the relative order of their values. Remarkably, we are able to show
that 1/(e+1) is the best-possible guarantee such algorithms can achieve. We do
so by generalizing the factor-revealing linear program due to Buchbinder et al. [8]
by adding variables and constraints. Arguing that the LP indeed models our
problem becomes more difficult because, in contrast to the setting of Buchbinder
et al., at any time, even the size of the next item is random. We do so by showing
reductions between our model and an auxiliary batched-arrival model.

2 Preliminaries

We use the following notation. Let I = {1, . . . , n} be the set of items (also called
elements), where each item i ∈ I is specified by a profit vi and a size si. Moreover,
we are given a knapsack of capacity B ∈ N≥2. The goal is to find a maximum-
profit packing, i.e., a subset of items S such that

∑
i∈S si ≤ B and

∑
i∈S vi is

66 A. Abels et al.

maximized. Without loss of generality, we assume that all elements have distinct
values and that v1 > v2 > ... > vn. This way, the name of an item i corresponds
to the (global) rank in I.

Throughout the following sections, an important subclass of the knapsack
problem arises where each item has either size 1 or B.

Definition 1 (1-B-knapsack). We call the special case of the knapsack prob-
lem where all items have size 1 or B the 1-B-knapsack problem. Items of size 1
are called small and items of size B are called large.

Within the context of 1-B-knapsack, we use the following further notation.
Let IS be the set of small items. For any small item i ∈ IS , let rs(i) denote
its rank among the small items. Note that rs(i) is at most the global rank i
of this item. Further, let r′

g(a) denote the global rank of the small item x that
satisfies rs(x) = a. When we use just the word “rank”, we refer to the global
rank.

Let OPT be an optimal offline algorithm. For any algorithm ALG, we overload
the notation and use the same symbol also for the packing returned by the
algorithm. Further, we denote by v(ALG) :=

∑
i∈ALG vi the total profit of the

packing returned by ALG. We are particularly interested in online algorithms,
i.e., algorithms that are initially only given n and are presented with the items
one by one. Upon arrival of any item, an online algorithm has to irrevocably
decide whether it includes the item or not. A special class of algorithms we
consider are ordinal algorithms. These algorithms only have access to the item
sizes and the relative order of item values.

We say that an online algorithm ALG is ρ-competitive if E[v(ALG)] ≥ ρ ·
v(OPT) for all instances, where the expectation is taken over a uniformly random
arrival order (and possibly internal randomization that the algorithm uses). In
general, we assume n → ∞ for our bounds. Note that, for a fixed number of
items, we can achieve a guarantee that is arbitrarily close to the guarantee for
n → ∞ by adding a sufficient amount of virtual dummy items.

Finally, throughout the paper, we use the notation [k] := {1, . . . , k} for
any k ∈ N.

3 Matching 1/e for 1–2-Knapsack

In this section, we develop an optimal algorithm for 1–2-knapsack. For this
purpose, we first propose a natural algorithm for 1-B-knapsack, based on the
size-oblivious approach from [2]. Here, items are accepted whenever their profit
exceeds a certain threshold, similar to the optimal algorithm for the classic
secretary problem. Therefore, we call it the extended secretary algorithm. From
an initial sampling phase of length cn, where c ∈ (0, 1) is a parameter of the
algorithm, the best item is used as a reference element. Subsequently, any item
beating the reference element is packed if it still fits. A formal description is
given in Algorithm 1.

Knapsack Secretary Through Boosting 67

Algorithm 1: Extended secretary algorithm
Input: Instance of 1-B-knapsack arriving in uniformly random order,
parameter c ∈ (0, 1).
Output: A knapsack packing.
for round � = 1 to n do

if � ≤ cn then
Reject the current item; // sampling phase

end
if � > cn then

Let v∗ be the highest profit seen up to round �cn�;
Pack the current item if its profit exceeds v∗ and the remaining capacity
is large enough;

end

end

In the following, we denote Algorithm 1 by ALG and set

pi(j) := Pr[ALG packs item i as the j-th element],
pi := pi(1),

Pi :=
B∑

j=1

pi(j).

Thus, Pi is the probability that the algorithm packs item i at all, while pi is the
probability that it is packed as the first item. We first state some results on the
values pi, which have essentially been investigated in [3]. Indeed, the following
results follow from that work and some simple observations.

Lemma 1. For i ∈ N, it holds that

pi = c

(

ln
1
c

+
i−1∑

�=1

(−1)�+1

(
i − 1

�

)
c� − 1

�

)

± o(1).

Proof. Let i ∈ N. The extended secretary algorithm packs i as the first item if
and only if the single-ref algorithm from [3] with r = 1 and k = i packs i
as the first item. Hence, the probability pi can be derived from [3] as follows:
If i = 1, item i is a dominating item in the terminology of [3] and Lemma 6 of [3]
gives p1 = c · ln(1/c) − o(1). In the case i ≥ 2, item i is a non-dominating item
in the terminology of [3]. Here, Lemma 4 of [3] gives pi = pi(i) and Lemma 5
of [3] and gives pi(i) = p1(i), that is, pi turns out to be the probability that the
dominating item 1 is accepted as the i-th item by the single-ref algorithm.
Again, the claim follows from Lemma 6 of [3]. 	

Furthermore, observe that, since increasing the profit of an item cannot
decrease its probability of being selected, we have pi ≥ pi+1 for all i ∈ [n − 1].
Note that ALG accepts no item if and only if the best item is in the sampling
phase. Therefore, we have the following observation.

68 A. Abels et al.

Observation 1. It holds that
n∑

i=1

pi = 1 − Pr[ALG accepts no item]

= 1 − Pr[item 1 appears in sampling phase] = 1 − c.

In the following subsection, we identify relations between the probabilities Pi

and pj .

3.1 Structural Lemma

In this subsection, we show the following lemma connecting the probabili-
ties Pi to the probabilities pj from Lemma 1. The analysis showing the 1/e-
competitiveness of our algorithm is crucially based on this result. Note that we
only use it for B = 2 but it holds for all B.

Lemma 2. The probability that ALG packs element i ∈ I is

Pi =

⎧
⎪⎪⎨

⎪⎪⎩

pi if element i is large, (1)

i∗s · pi +
B∗
∑

x=rs(i)+1

pr′
g(x)

if element i is small, (2)

with i∗s := min{rs(i), B} and B∗ := min {B, |IS |}.
Observe that (1) follows immediately: Any large element can only be packed
when the knapsack is empty, i.e., as the first element. The proof of (2) requires
a bit more work.

Definition 2. Let Ei,j
x,y be the event that the small elements i and j are packed

as the x-th and y-th items, respectively.

Note that the event that any item i ∈ IS is packed as x-th item, where x ≥ 2,
can be partitioned according to the item packed first. Therefore, for any i ∈ IS

and x ≥ 2,
pi(x) =

∑

j∈IS

Pr
[
Ej,i

1,x

]
. (3)

We have the following technical lemmata.

Lemma 3. Let i ∈ IS be any small item and i∗s = min{rs(i), B}. For 2 ≤ � ≤ i∗s,
it holds that

∑

j∈IS

Pr
[
Ei,j

1,�

]
= pi.

Proof. The first step is to show that at least � elements are accepted in total,
if element i is accepted first. Since element i has rank rs(i) among the small
elements, there are rs(i)−1 small elements that are more valuable. Their position
in the input sequence cannot be in the sampling phase, nor before element i if
it is packed first. So there are at least i∗s small elements that can be packed
subsequently. Therefore, for 2 ≤ � ≤ i∗s , a small element is packed as �-th item.
The claim follows by partitioning the event that i is packed first according to
the item j ∈ IS packed as �-th item. 	

Knapsack Secretary Through Boosting 69

Fig. 1. Occurrence of element i and m in event Em,j
1,rs(m) and Ei,j

1,rs(m)

Lemma 4. For any two small elements i, j ∈ IS and any x, y ∈ [B], we have
Pr

[
Ei,j

x,y

]
= Pr

[
Ej,i

x,y

]
.

Proof. Consider any input sequence of Ei,j
x,y and the sequence resulting from

swapping the elements i and j. Since both elements are not part of the sample,
the reference element is not changed by the swap. Therefore, no element that
was previously accepted will be rejected and none that was previously rejected
will be accepted. Only the order of selection changes. 	

Lemma 5. For any small items i, j,m ∈ IS with rs(m) > 1 and rs(i) < rs(m),
it holds that Pr

[
Em,j

1,rs(m)

]
= Pr

[
Ei,j

1,rs(m)

]
.

Proof. Consider any input sequence from Em,j
1,rs(m). Since rs(i) < rs(m) applies,

element i lies behind the element with rank m in the sequence. If both are
selected (see i1 in Fig. 1), this also applies after they have been swapped (see
Lemma 4 and m1 in Fig. 1). If previously only element m of the two is packed,
only element i (of the two) is selected after their swapping (i2 and m2 in Fig. 1),
since in this case, nothing changes in the reference element either. Therefore
Pr

[
Em,j

1,rs(m)

]
≤ Pr

[
Ei,j

1,rs(m)

]
applies.

Now consider any input sequence from Ei,j
1,rs(m). We show that the element

m lies behind the element i in the sequence since an element is packed as z-th
item, where z = rs(m). Assuming this did not apply and m is in the sample,
then there would be at most rs(m) − 1 small elements that can be packed.

In the case that it occurs in the sequence after the sampling phase, but before
element i, there must be a more valuable element in the sample (because m was
not packed) and therefore there are again at most rs(m)− 1 small elements that
can be selected. In particular, in both cases, no element is packed as z-th item
for rs(m). This is a contradiction to the fact that we consider an input sequence
in Ei,j

1,rs(m). Now, using the same argumentation as in the first case, it follows

that Pr
[
Em,j

1,rs(m)

]
≥ Pr

[
Ei,j

1,rs(m)

]
, which completes the proof. 	

Using Lemmas 3, 4 and 5, we are now able to prove Lemma 2.

70 A. Abels et al.

Proof (Lemma 2). Let i ∈ I be any item. If i is large, it can only be packed as
the first item, thus Pi = pi. Now, assume that i is small. It holds that

Pi =
B∗
∑

x=1

pi(x) =
i∗
s∑

x=1

pi(x)

︸ ︷︷ ︸
(∗)

+
B∗
∑

x=rs(i)+1

pi(x)

︸ ︷︷ ︸
(∗∗)

.

We next simplify both starred terms using Lemmas 3, 4 and 5. For (∗), it holds
that

i∗
s∑

x=1

pi(x) = pi(1) +
i∗
s∑

x=2

∑

j∈IS

Pr
[
Ej,i

1,x

]
(Equation (3))

= pi +
i∗
s∑

x=2

∑

j∈IS

Pr
[
Ei,j

1,x

]
(Lemma 4)

= pi +
i∗
s∑

x=2

pi(1) (Lemma 3)

= i∗s · pi.

For (∗∗), we obtain

B∗
∑

x=rs(i)+1

pi(x) =
B∗
∑

x=rs(i)+1

∑

j∈IS

Pr
[
Ej,i

1,x

]
(Equation (3))

=
B∗
∑

x=rs(i)+1

∑

j∈IS

Pr
[
Ei,j

1,x

]
(Lemma 4)

=
B∗
∑

x=rs(i)+1

∑

j∈IS

Pr
[
E

r′
g(x),j

1,x

]
(Lemma 5, rs(i) < x)

=
B∗
∑

x=rs(i)+1

pr′
g(x),

(Lemma 3, 2 ≤ x = rs(r′
g(x)) ≤ B)

which completes the proof. 	

The following corollary is an immediate consequence of Lemma 2 for B = 2.

Corollary 1. For B = 2, the probability that ALG packs element i ∈ I is

Pi =

⎧
⎪⎨

⎪⎩

pi if i is large,
pi + pr′

g(2)
if i is small and rs(i) = 1,

2pi if i is small and rs(i) > 1,

where, if the second most valuable small item does not exist, we set pr′
g(2)

= 0.

Knapsack Secretary Through Boosting 71

3.2 First Approach: Without Boosting

In this subsection, we study Algorithm 1 (as is) for 1–2-knapsack. Unfortunately,
there are two instances such that it is impossible to choose the parameter c so
that Algorithm 1 is (1/e)-competitive on both instances.

Lemma 6. For 1–2-knapsack, the competitive ratio of ALG is at most 0.35767,
assuming n → ∞.

Proof. Let 1 > ε > 0 be a constant. We define two instances I1 and I2. In the
first instance I1, all items are large and only one item has substantial profit.
Formally, let v1 = 1, vi = εi for 2 ≤ i ≤ n, and si = 2 for all 1 ≤ i ≤ n. Then,
for instance I1,

lim
ε→0

E[v(ALG)] = P1 · v1 = p1 · v(OPT). (4)

In the second instance I2, most items are large and essentially of the same
profit. However, the optimal packing contains two small items that appear at
ranks n − 1 and n. Formally, set si = 2 for 1 ≤ i ≤ n − 2, sn−1 = sn = 1,
and vi = 1 + εi for all i ∈ {1, . . . , n}. As item n never beats any reference item,
we have Pn = 0. Hence, the algorithm selects only items from {1, . . . , n−1} with
positive probability, and always at most one item. For instance I2, we get

lim
ε→0

E[v(ALG)] = lim
ε→0

n∑

i=1

(Pi · (1 + εi)) =
n∑

i=1

pi

Obs. (1)
= 1 − c ≤ 1 − c

2
· v(OPT). (5)

Overall, by Eqs. (4) and (5), the competitive ratio as n → ∞ of ALG is
bounded from above by

max
c∈(0,1)

min
{

p1,
1 − c

2

}

= max
c∈(0,1)

min
{

c · ln
1
c
,
1 − c

2

}

≤ 0.35767.

This completes the proof. 	

As a small side result, we show that this bound is almost tight. The techniques

are similar to those used for our main result and presented in the full version of
the paper.

Proposition 1. For 1-2-knapsack, the competitive ratio of ALG is 0.35317 −
o(1), setting c = 0.26888 and assuming n → ∞.

3.3 Optimal Algorithm Through α-Boosting

The proof of Lemma 6 reveals the bottleneck of Algorithm 1: If the optimal
solution consists of two elements having a high rank, the probability of selecting
those items is small. This problem can be resolved by the concept of α-boosting.

72 A. Abels et al.

Definition 3 (α-boosting). Let α ≥ 1 be the boosting factor. For any item
i ∈ I, we define its boosted profit to be

v′
i =

{
α · vi if i is small,
vi otherwise.

In the following, we investigate Algorithm 1 enhanced by the concept of
α-boosting, denoted by ALGα. This algorithm works exactly as given in the
description of Algorithm 1, but works with the boosted profit v′

i instead of the
actual profit vi for any item i ∈ I. Note that the unboosted algorithm analyzed
in Proposition 1 is ALG1. For the remainder of this subsection, we fix c = 1/e.
In particular, this implies p1 = 1/e ± o(1) and p2 = 1/e2 ± o(1) according to
Lemma 1.

So far, we did not specify the boosting factor α. However, the following intu-
itive reasoning already shows that α should be bounded from above and below:
If α is too large, we risk that ALGα packs small items with high probability,
even when they are not part of the optimal packing. On the other hand, by the
result of Proposition 1 we know that ALG1 cannot achieve an optimal compet-
itive ratio. The following theorem provides lower and upper bounds on α such
that ALGα is (1/e)-competitive.

Theorem 1. For 1–2-knapsack, algorithm ALGα is (1/e − o(1))-competitive if
and only if 1.400382 � α ≤ e/(e − 1) and c = 1/e, assuming n → ∞.

Proof. For any item x ∈ I, let ρ(x) denote the global rank of x after boosting.
On a high level, we need to consider two cases.

In the first case, the optimal packing contains a single item x. If ρ(x) = 1, we
immediately obtain E[v(ALGα)] ≥ p1vx = (1/e)·v(OPT). Now, suppose ρ(x) ≥ 2.
Let a and b be the items such that ρ(a) = 1 and ρ(b) = 2, respectively. Hence,

v′
a > v′

b ≥ v′
x ≥ v(OPT).

We note that a is small, as otherwise va = v′
a > v(OPT). Moreover, for α < 2,

item b is large: If b was small, it would follow that v′
b = α · vb and therefore va +

vb = v′
a/α + v′

b/α > (2/α) · v(OPT) > v(OPT), contradicting the assumption
that the optimal packing contains a single item. Therefore, a is small and b is
large, implying va = v′

a/α > v(OPT)/α and vb = v′
b ≥ v(OPT). Hence,

E[v(ALGα)] ≥ p1 · va + p2 · vb (6)

=
(

1
e

± o(1)
)

· v(OPT)
α

+
(

1
e2

± o(1)
)

· v(OPT)

≥
(

1
e

± o(1)
)

· v(OPT),

where the latter inequality holds for α ≤ e/(e − 1). Note that, when v′
a = 1,

v′
b = 1 − ε, and v′

z = O(ε) for all other items y, Inequality (6) becomes satisfied

Knapsack Secretary Through Boosting 73

with equality as ε → 0. Therefore, ALGα is not (1/e − o(1))-competitive when
α > e/(e − 1).

In the remainder of the proof, we consider the case where the optimal packing
contains two small items x and y, where we assume vx > vy without loss of
generality. We set j := ρ(x) and k := ρ(y), where 1 ≤ j < k. Now, let a1, . . . , aj−1

and bj+1, . . . , bk−1 denote the items appearing before x and between x and y,
respectively, in the ordered sequence of boosted profits:

v′
a1

> . . . > v′
aj−1

> v′
x > v′

bj+1
> . . . > v′

bk−1
> v′

y.

We observe that neither a items nor b items can be small: Otherwise, the profit
of such an item would be strictly larger than vy, and as any two small items fit
together, this item should be in the optimal packing instead of y. Therefore, we
have vai

= v′
ai

> v′
x = α · vx for all i ∈ {1, . . . , j − 1} and vbi = v′

bi
> v′

y = α · vy

for all i ∈ {j + 1, . . . , k − 1}.
Now, we can bound the expected profit of ALGα as follows:

E[v(ALGα)] ≥
(

j−1∑

i=1

Pi · α · vx

)

+ Pj · vx +

⎛

⎝
k−1∑

i=j+1

Pi · α · vy

⎞

⎠ + Pk · vy (7)

=

(
j−1∑

i=1

pi · α · vx

)

+ (pj + pk) · vx +

⎛

⎝
k−1∑

i=j+1

pi · α · vy

⎞

⎠ + 2pk · vy

=

(

pj + pk + α ·
j−1∑

i=1

pi

)

︸ ︷︷ ︸
λx

· vx +

⎛

⎝2pk + α ·
k−1∑

i=j+1

pi

⎞

⎠

︸ ︷︷ ︸
λy

· vy,

where we use Corollary 1 for the first equality.
If λx < λy we immediately get λxvx + λyvy > λx(vx + vy) ≥ p1(vx + vy) =

(1/e) · v(OPT). Therefore, we assume λx ≥ λy in the following. By Chebyshev’s
sum inequality, it holds that λxvx +λyvy ≥ (1/2) ·(λx +λy) ·(vx +vy). Therefore,
the competitive ratio is

E[v(ALGα)]
v(OPT)

≥ λx + λy

2
=

1
2

·
(

(1 − α) · pj + 3pk + α ·
k−1∑

i=1

pi

)

. (8)

If k = 2, it follows that j = 1 and therefore Eq. (8) resolves to

E[v(ALGα)] ≥ 1
2

· (p1 + 3p2) · v(OPT) >
1
e

· v(OPT),

which holds independently of α. For k ≥ 3, ALGα is (1/e − o(1))-competitive by
Eq. (8) if

α ≥ 2/e − pj − 3pk
∑k−1

i=1 pi − pj

=: θj,k.

74 A. Abels et al.

Table 1. Upper bounds on θj,k for 3 ≤ k ≤ 10 according to Eq. (9).

k 3 4 5 6 7 8 9 10
1/e−3pk
∑k−1

i=2 pi
1.3475 1.3962 1.400382 1.3988 1.3968 1.3952 1.3941 1.3934

It remains to show θj,k ≤ 1.400382 for all k ≥ 3 and j with 1 ≤ j < k. For this
purpose, we first show

θj,k =
2/e − pj − 3pk
∑k−1

i=1 pi − pj

≤ 2/e − p1 − 3pk
∑k−1

i=1 pi − p1
=

1/e − 3pk
∑k−1

i=2 pi

± o(1) for any k ≥ 3.

(9)

Since pj is decreasing in j, the inequality in Eq. (9) follows immediately if we can
show 2/e − 3pk >

∑k−1
i=1 pi for large-enough n. This inequality is easily verified

for k = 3, as 2/e − 3p3 > p1 + p2, for large-enough n. For k ≥ 4, note that
pk < p1−1/3, again for large-enough n, which is equivalent to 2/e−3pk > 1−p1.
Using Observation 1, we obtain

∑k−1
i=1 pi <

∑n
i=1 pi = 1− c = 1−p1. Combining

both inequalities yields Eq. (9).
By computing the last term in Eq. (9) for 3 ≤ k ≤ 10, we obtain the upper

bounds on θj,k given in Table 1. Note that the maximum value is 1.400382. For
k ≥ 11, we obtain from Eq. (9) together with pi ≥ 0 for all i ≥ 11 that

θj,k ≤ 1/e − 3pk
∑k−1

i=2 pi

≤ 1/e
∑11−1

i=2 pi

< 1.398875 ± o(1).

For the lower bound of approximately 1.400382 on α, first note that for j = 1
and k = 5, it holds indeed that

θ1,5 =
2/e − p1 − 3p5
∑5−1

i=1 pi − p1
=

1/e − 3p5
p2 + p3 + p4

± o(1)

= −51
16

+
9
4e

+
75 − 522e + 486e2

16 − 96e + 288e2 − 64e3
± o(1) ≈ 1.400382 ± o(1).

Next, note that setting v′
x,v′

b2
,v′

b3
,v′

b4
, and v′

y all equal to 1 + O(ε) and v′(z) =
O(ε) for all other items z makes Inequality (7) as well as Inequaltiy (8) tight as
ε → 0. Therefore, the above arguments imply that α ≥ θ1,5 if and only if ALGα

is (1/e − o(1))-competitive. This completes the proof. 	

4 Ordinal Algorithms for 1-B-Knapsack

In this section, we consider ordinal algorithms for 1-B-knapsack with B large.
Recall that ordinal algorithms have access to both item sizes and the relative
order on item values (of previously arrived items) but not to the actual item
values. We show the following theorem.

Knapsack Secretary Through Boosting 75

Theorem 2. There is an ordinal (1/(e + 1) − o(1))-competitive algorithm for
the 1-B-knapsack problem, and every ordinal algorithm has a competitive ratio
of at most 1/(e + 1) + o(1) for this problem.

We first discuss the lower bound, i.e., the algorithm. Note that, while the
input is any combination of large and small items, the optimal solution still con-
sists of either the single most valuable item OPTL or of a set of up to B small
items OPTS . Our algorithm can be viewed as a linear combination of (near-
)optimal algorithms ALGL and ALGS against the respective cases. In particular,
ALGL is the (1/e)-competitive algorithm [16] for the standard secretary problem
and run with probability e/(e+1); ALGS is the (1−o(1))-competitive algorithm
for k-secretary by Kleinberg [24] and run with probability 1/(e + 1). The com-
petitive ratio follows by a simple case distinction. A small subtlety that we need
to take care of is that these subroutines require the number of items as input. To
deal with this problem, we introduce dummy items. In the following, we make
this idea formal.

Proof (Algorithm). The algorithm ALGL treats all items as if they were large
and then applies the standard secretary algorithm [13,26]. For the algorithm
ALGS , whenever a large item arrives, we pretend that a small dummy item
with value 0 arrives. These dummy items can be accepted and take up space
in the capacity constraint, but they do not contribute to the solution value. On
this adapted instance, we apply an optimal algorithm for the multiple-choice
secretary problem, e.g. Kleinberg [24] or Kesselheim et al. [23]. Clearly, for both
algorithms, any solution for the respective adapted instance can be translated
back to a solution with equal value for the original instance. Also, both of these
algorithms are ordinal.

For every input instance, our algorithm chooses ALGL with probability e
e+1

and ALGS otherwise. To analyze the competitive ratio, distinguish two cases. If
OPT = OPTL, we use that the algorithm chooses ALGL with probability e/(e +
1) and conditioned on that achieves an expected value of v(OPTL)/e [13,26],
yielding an unconditional expected value of v(OPTL)/(e + 1). Otherwise, i.e.,
if OPT = OPTS , we use that ALGS is run with probability 1/(e + 1) which
achieves, as B → ∞, an expected value of (1 − o(1)) · v(OPTS), resulting in an
unconditional expected value of (1 − o(1)) · v(OPTS)/(e + 1). 	

We now discuss the upper bound, i.e., the impossibility. In our construction,
there are B large and B small items. All items have different values, and each
large item is more valuable than each small item. The adversary chooses between
two ways of setting the values: The first option is to make the solution consisting
of all small items much more valuable than any single large item; the second
option is to make a single large item much more valuable than any other solution.

Ideally, we would like to analyze algorithms in the following setting: In each
of n rounds, the algorithm is presented with both a uniformly random small
and a uniformly random large item out of the items not presented thus far.
Upon presentation of any such two items, the algorithm has to choose whether
to select all small items from now on or to select the current large item. While

76 A. Abels et al.

the actual setting, in which all items arrive in uniformly random order, is clearly
different, we show below that working with the other setting is only with a
(1 ± o(1))-factor loss in the impossibility by reductions between our problem
and an auxiliary batched-arrival model.

Assuming the latter setting, we can write a linear program similar to that
of Buchbinder et al. [8]. Like in that approach, each LP solution corresponds to
an algorithm and vice versa. More specifically, our LP uses two variables (rather
than one) for every time step, corresponding to the probabilities that the algo-
rithm accepts a large item or the first small item, respectively. In addition, there
is a variable representing the competitive ratio, and there are two upper bounds
(rather than one) on that variable, representing the two instances the adversary
can choose. A feasible dual solution then yields the desired impossibility. We
formalize these ideas in the following.

Proof (Impossibility). Consider the following two instances that are treated iden-
tically by ordinal algorithms. There are n = 2B items where items i ∈ {1, . . . , B}
are large and items i ∈ {B + 1, . . . , 2B} are small. In one instance, the item val-
ues are vi = 1 + (B − i) · ε for i ≤ B and vi = 1 − iε for i > B. In the other
instance, the values are the same except for v1 = B2. So, for both instances, the
rank of item i is indeed i, for all i ∈ {1, . . . , 2B}. The two optimal solutions are
OPTL = {1} and OPTS = {B + 1, B + 2, . . . , 2B}. The adversary decides which
of the two instances is the actual instance.

We consider the following batched-arrival setting parameterized with some
constant k and assume that k divides n. The items still arrive in uniformly
random order, but the algorithm does not always have to make a decision upon
the arrival of an item. More specifically, for any i ∈ {1, . . . , k}, upon the arrival
of the (i · n/k)-th item, the algorithm may make a decision about all items that
have arrived in the current batch, i.e., after the ((i − 1) · n/k)-th item. Clearly,
any upper bound on the competitive ratio achievable in this setting, is also an
upper bound on the competitive ratio achievable in the original setting.

Note that the expected number of items of each type, i.e., small and large,
in each batch is n/(2k). Let δ > 0 be some constant. As follows from a standard
concentration (e.g., Chernoff) bound, when n → ∞, the probability that the
number of items from each type is between (1 − δ) · n/(2k) and (1 + δ) · n/(2k)
approaches 1. From the union bound over all batches it then follows that also
the probability that the number of items of each type in each batch is within the
given range approaches 1. We may therefore assume that this is indeed the case
at an arbitrarily small loss in our impossibility.

To analyze the algorithm in the batched-arrival setting, we write a linear
program similar to that of Buchbinder et al. [8]. The LP encodes a probability
distribution for the decisions that an algorithm ALG makes against the pair of
instances. The variable pi represents the probability that the algorithm selects
the best large item from the i-th batch. Similarly, the variable qi represents the
probability that the algorithm selects all small items from both the i-th batch
and forthcoming batches.

Knapsack Secretary Through Boosting 77

Fig. 2. The primal and dual linear programs used in our proof of the upper bound in
Theorem 2.

Note that the algorithm may make any such decision, i.e., selecting the best
largest item or starting to select small items from a batch, for at most a single
batch. Hence, we obtain qi ≤ 1 − ∑i−1

j=1 pj + qj as a constraint for our LP for
all i ∈ [k]. Further, observe that we may assume that the algorithm only selects
a large item when the best largest item so far is in the current batch. In batch i,
the probability for this to happen is at most (1 + δ)/((1 + δ) + (i − 1) · (1 − δ)).
As δ → 0, we obtain

pi ≤
⎛

⎝1 −
i−1∑

j=1

pj + qj

⎞

⎠ · 1
i

for all i ∈ [k], another constraint of the LP.
The objective function of the LP is c, an upper bound on the competitive

ratio of the algorithm. For each of the two instances that the adversary could
choose, we write an additional constraint upper bounding c. If the adversary
chooses the first instance and the algorithm starts selecting small items at the
end of the i-th batch, the fraction of v(OPTS) the algorithm obtains is at most

(k − i + 1) · (1 + δ)
(k − i + 1) · (1 + δ) + (i − 1) · (1 − δ)

δ→0−−−→ 1 − i − 1
k

.

Hence, as δ → 0, we obtain the constraint c ≤ ∑k
i=1

(
1 − i−1

k

)
qi. Now consider

the case that the adversary chooses the second instance. Suppose that the algo-
rithm selects the best large item from the i-th batch, which is by assumption the
best item that has already arrived. Since the order of large items is a uniformly
random order, the probability that the chosen item is the globally best large
item is the fraction of already observed large items within the whole instance,
that is, at most

i · (1 + δ)
i · (1 + δ) + (k − i) · (1 − δ)

δ→0−−−→ i

k
.

78 A. Abels et al.

Hence, as δ → 0, we get the constraint c ≤ ∑k
i=1(pi · i

k) = 1
k

∑k
i=1 i · pi. We give

both the resulting LP and its dual in Fig. 2.
We give a solution to the dual LP. Let τ be the integer number such that

k−1∑

i=τ

1
i

< 1 ≤
k−1∑

i=τ−1

1
i
.

We set yi = 0 for all i < k, yk = 1/((e + 1) · k), xi = 0 for i < τ , and

xi =
e

(e + 1) · k
·
⎛

⎝1 −
k−1∑

j=i

1
j

⎞

⎠

for i ≥ τ . Further, α = e/(e + 1) and β = 1/(e + 1). Note that this choice of x
is analogous to the dual solution by Buchbinder et al. [8] but scaled by a factor
of α.

We argue that the solution is feasible when x is scaled up by a (1 + o(1))
factor (where the Landau symbol is with respect to k → ∞). Clearly, α+β = 1.
The inequality ixi +

∑k
j=i+1 xj + yj ≥ i

k · α is the same as in the dual by
Buchbinder et al., except for additional y variables on the left-hand side and
a scaling by α of the right-hand side. Therefore with our choice of x (which is
scaled up by α compared to Buchbinder et al.), the inequalities are identical and
the previous proof of feasibility also holds, even without additional scaling of x.
We consider the remaining (new) inequalities. For i = 1, we have

y1 +
k∑

j=2

xj + yj ≥ e

(e + 1) · k
·

k∑

j=τ

⎛

⎝1 −
k−1∑

�=j

1
�

⎞

⎠

=
e

(e + 1) · k
·
⎛

⎝(k − τ + 1) −
k∑

j=τ

k−1∑

�=j

1
�

⎞

⎠

=
e

(e + 1) · k
·
⎛

⎝(k − τ + 1) −
k∑

j=τ+1

j − τ

j

⎞

⎠

=
e

(e + 1) · k
·
⎛

⎝1 + τ

k∑

j=τ+1

1
j

⎞

⎠ ≥ 1
1 + o(1)

· 1
e + 1

.

For 1 < i < τ the corresponding inequality is weaker than the latter inequality.
For i ≥ τ , we have

yi +
k∑

j=i+1

xj + yj = yk +
k∑

j=i+1

xj .

Since yk = β/k, we therefore have to show that, after scaling x up by a (1 + o(1))-
factor,

∑k
j=i+1 xj is at least as large as (1 − i/k) · β. This is clear for i = k.

Knapsack Secretary Through Boosting 79

For τ ≤ i ≤ k − 1,

k∑

j=i+1

xj =
e

(e + 1) · k
·

k∑

j=i+1

⎛

⎝1 −
k−1∑

�=j

1
�

⎞

⎠

=
e

(e + 1) · k
·
⎛

⎝(k − i) −
k∑

j=i+1

k−1∑

�=j

1
�

⎞

⎠

=
e

(e + 1) · k
·
⎛

⎝(k − i) −
k−1∑

j=i+1

j − i

j

⎞

⎠

=
e

(e + 1) · k
·
⎛

⎝1 + i
k−1∑

j=i+1

1
j

⎞

⎠ ≥ 1
1 + o(1)

·
(

1 − i

k

)

· 1
e + 1

.

Similar to the previous calculations, the objective-function value is

(1 + o(1)) · e

(e + 1) · k
·

k∑

j=τ

⎛

⎝1 −
k−1∑

�=j

1
�

⎞

⎠

= (1 + o(1)) · e

(e + 1) · k
·
⎛

⎝1 + τ

k∑

j=τ+1

1
j

⎞

⎠

≤ (1 + o(1)) · e

(e + 1) · k
· τ

≤ (1 + o(1)) · 1
e + 1

,

as claimed. 	

5 Conclusion

In this paper, we have established that the 1-2-knapsack secretary problem is no
harder than the classic secretary problem in a competitive-ratio sense. While we
previously noticed that our technique cannot directly be extended to the general
setting, we believe that our work is a first non-trivial step within the larger
research plan of settling the achievable competitive ratio for general knapsack
secretary.

It seems plausible that our result extends to the setting of arbitrary knapsack
size B and item sizes 1 or 2. One approach may be combining our techniques
with simple 1/e-competitive algorithms for k-secretary [4]. More general variants
seem to require handling packings of items of various sizes. A variant that avoids
considering such potentially complicated configurations and may still yield an
impossibility of larger than 1/e is 1-B-knapsack.

80 A. Abels et al.

References

1. Albers, S., Khan, A., Ladewig, L.: Best fit bin packing with random order revisited.
Algorithmica 83(9), 2833–2858 (2021)

2. Albers, S., Khan, A., Ladewig, L.: Improved online algorithms for knapsack and
GAP in the random order model. Algorithmica 83(6), 1750–1785 (2021)

3. Albers, S., Ladewig, L.: New results for the k-secretary problem. Theor. Comput.
Sci. 863, 102–119 (2021)

4. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary prob-
lem with applications. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P.
(eds.) APPROX/RANDOM - 2007. LNCS, vol. 4627, pp. 16–28. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-74208-1 2

5. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Matroid secretary prob-
lems. J. ACM 65(6), 35:1–35:26 (2018)

6. Böckenhauer, H.-J., Komm, D., Královic, R., Rossmanith, P.: The online knapsack
problem: advice and randomization. Theor. Comput. Sci. 527, 61–72 (2014)

7. Boyar, J., Favrholdt, L.M., Larsen, K.S.: Online unit profit knapsack with
untrusted predictions. In: Scandinavian Symposium and Workshops on Algorithm
Theory (SWAT), pp. 20:1–20:17 (2022)

8. Buchbinder, N., Jain, K., Singh, M.: Secretary problems via linear programming.
Math. Oper. Res. 39(1), 190–206 (2014)

9. Chan, T.-H.H., Chen, F., Jiang, S.H.-C.: Revealing optimal thresholds for gener-
alized secretary problem via continuous LP: impacts on online k-item auction and
bipartite k-matching with random arrival order. In: ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 1169–1188 (2015)

10. Correa, J.R., Dütting, P., Fischer, F.A., Schewior, K.: Prophet inequalities for
independent and identically distributed random variables from an unknown distri-
bution. Math. Oper. Res. 47(2), 1287–1309 (2022)

11. Correa, J.R., Dütting, P., Fischer, F.A., Schewior, K., Ziliotto, B.: Streaming algo-
rithms for online selection problems. In: Innovations in Theoretical Computer Sci-
ence (ITCS), p. 86:1 (2021)

12. Dinitz, M.: Recent advances on the matroid secretary problem. SIGACT News
44(2), 126–142 (2013)

13. Dynkin, E.: The optimum choice of the instant for stopping a Markov process.
Soviet Math. Dokl. 4, 627–629 (1963)

14. Ezra, T., Feldman, M., Gravin, N., Tang, Z.G.: General graphs are easier than
bipartite graphs: tight bounds for secretary matching. In: ACM Conference on
Economics and Computation (EC), pp. 1148–1177 (2022)

15. Feldman, M., Svensson, O., Zenklusen, R.: A simple O(log log(rank))-competitive
algorithm for the matroid secretary problem. Math. Oper. Res. 43(2), 638–650
(2018)

16. Ferguson, T.S.: Who solved the secretary problem? Stat. Sci. 4(3), 282–289 (1989)
17. Giliberti, J., Karrenbauer, A.: Improved online algorithm for fractional knapsack in

the random order model. In: Koenemann, J., Peis, B. (eds.) WAOA 2021. LNCS,
vol. 12982, pp. 188–205. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-92702-8 12

18. Gupta, A., Singla, S.: Random-order models. In: Roughgarden, T. (ed.) Beyond
the Worst-Case Analysis of Algorithms, pp. 234–258. Cambridge University Press
(2021)

https://doi.org/10.1007/978-3-540-74208-1_2
https://doi.org/10.1007/978-3-030-92702-8_12
https://doi.org/10.1007/978-3-030-92702-8_12

Knapsack Secretary Through Boosting 81

19. Hoefer, M., Kodric, B.: Combinatorial secretary problems with ordinal informa-
tion. In: International Colloquium on Automata, Languages, and Programming
(ICALP), pp. 133:1–133:14 (2017)

20. Kenyon, C.: Best-fit bin-packing with random order. In: ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 359–364 (1996)

21. Kesselheim, T., Molinaro, M.: Knapsack secretary with bursty adversary. In: Inter-
national Colloquium on Automata, Languages, and Programming (ICALP), pp.
72:1–72:15 (2020)

22. Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: An optimal online algorithm
for weighted bipartite matching and extensions to combinatorial auctions. In: Bod-
laender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 589–600.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40450-4 50

23. Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: Primal beats dual on online
packing LPS in the random-order model. SIAM J. Comput. 47(5), 1939–1964
(2018)

24. Kleinberg, R.D.: A multiple-choice secretary algorithm with applications to online
auctions. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 630–
631 (2005)

25. Lachish, O.: O(log log rank) competitive ratio for the matroid secretary problem.
In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 326–335
(2014)

26. Lindley, D.: Dynamic programming and decision theory. Appl. Statist. 10, 39–51
(1961)

27. Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems.
Math. Program. 68, 73–104 (1995)

28. Naori, D., Raz, D.: Online multidimensional packing problems in the random-order
model. In: International Symposium on Algorithms and Computation (ISAAC),
pp. 10:1–10:15 (2019)

29. Soto, J.A., Turkieltaub, A., Verdugo, V.: Strong algorithms for the ordinal matroid
secretary problem. Math. Oper. Res. 46(2), 642–673 (2021)

30. Zhou, Y., Chakrabarty, D., Lukose, R.: Budget constrained bidding in keyword
auctions and online knapsack problems. In: Papadimitriou, C., Zhang, S. (eds.)
WINE 2008. LNCS, vol. 5385, pp. 566–576. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-92185-1 63

https://doi.org/10.1007/978-3-642-40450-4_50
https://doi.org/10.1007/978-3-540-92185-1_63
https://doi.org/10.1007/978-3-540-92185-1_63

Scheduling Appointments Online: The
Power of Deferred Decision-Making

Devin Smedira(B) and David Shmoys

Cornell University, Ithaca, NY 14850, USA
{dts88,david.shmoys}@cornell.edu

Abstract. The recently introduced online Minimum Peak Appointment
Scheduling (MPAS) problem is a variant of the online bin-packing prob-
lem that allows for deferred decision making. Specifically, it allows for
the problem to be split into an online phase where a stream of appoint-
ment requests arrive requiring a scheduled time, followed by an offline
phase where those appointments are scheduled into rooms. Similar to the
bin-packing problem, the aim is to use the minimum number of rooms in
the final configuration. This model more accurately captures scheduling
appointments than bin packing. For example, a dialysis patient needs to
know what time to arrive for an appointment, but does not need to know
the assigned station ahead of time.

Previous work developed a randomized algorithm for this problem
which achieved an asymptotic competitive ratio of at most 1.5, prov-
ing that online MPAS was fundamentally different from the online bin-
packing problem. Our main contribution is to develop a new randomized
algorithm for the problem that achieves an asymptotic competitive ratio
under 1.455, indicating the potential for further progress. This improve-
ment is attained by modifying the process for scheduling appointments
to increase the density of the packing in the worst case, along with uti-
lizing the dual of the bin-packing linear programming relaxation to per-
form the analysis. We also present the first known lower bound of 1.2
on the asymptotic competitive ratio of both deterministic and random-
ized online MPAS algorithm. These results demonstrate how deferred
decision-making can be leveraged to yield improved worst-case perfor-
mance, a phenomenon which should be investigated in a broader class of
settings.

Keywords: Bin packing · Online algorithm · Competitive analysis ·
Primal-dual algorithm

1 Introduction

The bin-packing problem is a classic and well-studied problem in algorithm
design, with applications in a wide array of industries [8,9,12]. The problem

This research is supported in part by grants NSF/FDA SIR IIS-1935809, NSF CCF-
1740822, NSF DMS-1839346, and NSF CCF-1522054.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Chalermsook and B. Laekhanukit (Eds.): WAOA 2022, LNCS 13538, pp. 82–115, 2022.
https://doi.org/10.1007/978-3-031-18367-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18367-6_5&domain=pdf
http://orcid.org/0000-0002-7429-5919
http://orcid.org/0000-0003-3882-901X
https://doi.org/10.1007/978-3-031-18367-6_5

Scheduling Appointments Online: The Power of Deferred Decision-Making 83

requires packing items of given lengths into unit-length bins such that no two
items in a bin overlap, with the goal of minimizing the total number of bins used.
In particular, the “online” version of the problem is historically important and
continues to be practically relevant. In this version, items are received one at a
time, and each item must be placed in a bin before the next item is received.
Existing approximation algorithms for it have become very well refined, with
upper and lower bound results on the competitive ratio becoming very close
in the last few years [1,2,7]. Further, the optimal absolute competitive ratio is
known [3].

This paper studies a variant of the well-known bin-packing problem called
the minimum peak appointment scheduling (MPAS) problem [10]. Recently pro-
posed, an input to this problem is a set of jobs, each of a given length, that needs
to be scheduled within a period of time. For example, one might be assigning
each job to an interval within one 9AM–5PM work day. The objective is to min-
imize the peak utilization, that is, the maximum number of jobs being serviced
simultaneously. In fact, Escribe et al. [10] highlight this objective, since they
considered an application in which each job is also assigned to a facility, and the
aim is to minimize the number of facilities needed. One can view each facility
as a bin, and the position within the bin as the time interval to which a job is
assigned. They observe that the minimum number of bins required (for a feasible
schedule) is equal to the peak utilization, which follows directly from the fact
that interval graphs are perfect (see, e.g., [11]). Therefore, in the offline setting,
this scheduling problem is identical to the bin-packing problem. In the online
setting, however, as requests for appointments arrive one after the other, only
a time interval needs to be committed to, instead of a facility (as well as the
time). This allows for added scheduling flexibility which can be exploited. As
Escribe et al. [10] showed, this difference is sufficient to prove that the online
MPAS problem is fundamentally different from bin packing. This is highlighted
in Table 1, where the column denoted asymptotic ratio, referring to the asymp-
totic competitive ratio, gives a proven upper or lower bound on the ratio between
objective function of the solution found to the optimal (taken in the limit over
increasing input sizes).

Table 1. Comparison of previously known bin-packing and MPAS bounds

Problem Type of algorithm Type of bound Asymptotic ratio Paper

Bin-packing Deterministic Lower bound 1.54278 Balogh et al. (2021) [2]

Bin-packing Deterministic Upper bound 1.57829 Balogh et al. (2017) [1]

Bin-packing Randomized Lower bound 1.536 Chandra (1992) [7]

MPAS Randomized Upper bound 1.5 Escribe et al. (2021) [10]

Many real-world decision-making problems can be solved by framing them
as a bin-packing problem and applying existing algorithms. However, using the
familiar but rigid framework of bin packing can create solutions that do not

84 D. Smedira and D. Shmoys

fully utilize the flexibility of the particular setting at hand. For example, an
infusion center might need to determine how many chairs to configure each day.
As appointments are made, the center may only need to commit to a particular
time for the appointment - they do not necessarily have to commit to a particular
chair for that appointment. An event host might need to determine how many
rooms are necessary to host a particular event, but they may not need to tell the
attendees which room they will be in until the day of the event. In both cases,
traditional bin-packing algorithms can provide answers to these questions, but
as this work will show, these solutions may result in an unnecessary waste of
resources. In this sense, the MPAS framework is a natural generalization of the
traditional bin-packing paradigm that is tailored for optimization problems that
revolve around appointment scheduling. While this framework can be used to
improve the solutions generated by approximation algorithms, the principles
developed by the exploration of this framework can also be used to improve the
efficiency of operations even when the scheduling is managed manually.

In additional to its practical use, this problem is also of theoretical interest
because it is an effective vehicle for studying the power of delayed decision-
making in online problems. This problem is partitioned into two fundamental
steps, the first conducted in real time online and the second conducted later
offline. One goal of this work is to highlight how this partition can be leveraged
to improve on the solution to the normal online bin-packing problem, with the
hope that similar delayed decision principles might lead to improvements in the
solutions to other existing or future online problems. In particular, one could
imagine other online bin-packing relaxations arising in different settings, the
study of which would be aided by work on the online MPAS problem.

To underscore the connection of this work to bin-packing problems, this paper
will use terminology commonly found in the bin-packing literature. Arriving
jobs for the MPAS problem will be referred to as items, and their duration
referred to as their size. Scheduling an item will be referred to as placing it into
a position within a bin. While it is traditional to represent bin-packing solutions
in which the bins are oriented vertically, in this paper, we will be view them as
oriented horizontally, with position 0 on the left and position 1 on the right; this
orientation provides a more intuitive connection to the time intervals the bins
represent, analogous to a Gantt chart representation for a schedule. For example,
scheduling an item at the left end of a bin is analogous to the first appointment
of the interval, and scheduling an item to the right of another item corresponds
to the item occurring later.

An Overview of Known Algorithms. In addition to defining the MPAS problem,
Escribe et al. [10] contributed a novel randomized algorithm for the online MPAS
problem called the Harmonic Rematching Algorithm and provided an analysis to
prove the algorithm had an asymptotic competitive ratio of 1.5. The algorithm
that we propose and analyze in this work is greatly inspired by the Harmonic
Rematching algorithm, which itself was influenced by the harmonic algorithm
for online bin-packing [13]. Like the problem, the algorithm is composed of two
phases: an initial scheduling phase done in an online fashion and a subsequent

Scheduling Appointments Online: The Power of Deferred Decision-Making 85

rematching phase that places items into final bins. The number of bins used in
the algorithm provides an upper bound on the peak appointments, from which
an asymptotic competitive ratio for their algorithm can be calculated.

In the scheduling phase of the algorithm of [10], items are initially sorted
into categories based on their size of the form (1

n+1 , 1
n]. Items are then scheduled

according to unique rules for each category. Then, during the rematching phase
of the algorithm, items of size under 0.5 are rematched into bins containing only
other items of the same category and items of size over 0.5. The analysis of the
algorithm then shows that an average bin density of 2

3 is maintained so long as
there are under 2 items of size over 0.5 for every 3 bins the algorithm outputs.
The derivation of the asymptotic competitive ratio follows directly from this
property.

New Contributions. The primary contribution of this work is to refute a conjec-
ture [14] that no algorithm could achieve a lower asymptotic competitive ratio
than 1.5 for the online MPAS problem. The new bound is achieved through mod-
ifications to the existing algorithm to increase the packing density and the use of
a new analytic framework inspired by a primal-dual analysis of the bin-packing
linear program. By refuting this conjecture, and providing a more sophisticated
algorithm and analysis to do so, this work represents a step towards better
understanding the degree to which deferred decision making can improve the
performance of online algorithms more broadly.

A secondary contribution of this work is to present the first known lower
bounds on the asymptotic competitive ratio of any algorithm for the online
MPAS problem. Using a family of inputs consisting only of items with size 1

3 and
2
3 , it is possible to prove no deterministic or randomized algorithm for the online
MPAS problem can achieve an asymptotic competitive ratio below 1.2 (works
building on an arXiv posting of this work improved the lower bound to 1.2691
[4]). For deterministic algorithms, this is relatively straightforward - an adversary
can present n items of size 1

3 first, and depending on whether the algorithm
leaves sufficiently many bins with only 1 of these, decides whether to add to the
input n items of size 2

3 . The lower bound for randomized algorithms extends this
approach using Yao’s framework for proving randomized lower bounds [6].

The majority of this paper will be dedicated to outlining the new algorithm
for the online MPAS problem and providing an analysis to prove it achieves an
asymptotic competitive ratio of 16

11 ≈ 1.455. In particular, Sect. 2 will detail the
behavior of the algorithm, whereas Sect. 3 will present an analysis of the desired
performance guarantee. Section 4 will present the lower bound results, whereas
Sect. 5 outlines the potential for further work.

2 Packing Algorithm

The following is a detailed description of the algorithm for solving the online
MPAS problem. The algorithm will proceed in two main steps. First, there will
be a section dedicated to scheduling the items as they arrive. Then, there will

86 D. Smedira and D. Shmoys

be a second separate section dedicated to rematching the scheduled items into
final bins.

An online algorithm for the MPAS problem would be complete with only the
first schedule creation phase of the algorithm, since the task is only to schedule
appointments to minimize the peak. However, many practical applications would
require some mechanism to take this appointments and actually group them
together, say to schedule them to a room. For this reason the work includes
the second algorithmic step, rematching. This step will also play a role in the
analysis of the algorithm, with the number of bins produced by the rematching
portion used in place of the number of appointments at the peak time, since the
former is an upper bound on the latter.

2.1 Schedule Creation

The first phase of this online algorithm is the scheduling phase. During the
scheduling phase, new items arrive in an online manner and each item is assigned
to a position within a bin.

Item Categories. Every item will be given a type based on its size. How an item
is initially scheduled, as well as in what manner it is rematched into bins, will
depend on which type of item it is. These different item types are:

Small Item - Item of size ≤ 1/3
Third Item - Item of size in (1/3, 0.34375]
Medium Item - Item of size in (0.34375, 0.5]
Large Item - Item of size in (1/2, 0.6875]
Very Large Item - Item of size > 0.6875.

Within the specified range of each item type, there will be one or more differ-
ent categories. Each category will have its own specific procedure on how items
from the category should be both initially scheduled and eventually rematched
into bins. The full list of item categories appears in Appendix C, along with
other relevant details. Two categories in particular will be important enough in
the analysis to separately name. These categories are:

Quarter Items - A Small Item category for items of size in (1/4, 0.27]
Half Items - A Medium Item category for items of size in (0.46, 1/2].

In particular, Quarter Items are the Small Item category that admits the
least dense packing, thus requiring more special care in the analysis.

One-Sided Bins. The initial scheduling phase of the algorithm will consist of
creating a set of One-Sided Bins that will later be rematched. A one-sided
bin is a category-specific construct containing only items from one particular
category. Items will be scheduled into these one-sided bins, and every item in
the same one-sided bin will be scheduled in the same bin at the end of the
algorithm (with a slight exception for Third Items detailed later). Specifically,

Scheduling Appointments Online: The Power of Deferred Decision-Making 87

each final bin returned by the algorithm will consist exclusively of items from
one or two one-sided bins.

There will be three types of one-sided bins used by the algorithm. They are:

Type 1 Bins - A type 1 bin will be a one-sided bin that is over 0.6875 full.
These bins will not be matched with other one-sided bins, so each type 1 bin
will be assigned its own bin when the algorithm terminates.

Type 2 Large Bins - A type 2 large bin will be a one-sided bin that is over
0.3125 full but under 0.6875 full. These bins might or might not be matched
during the course of the algorithm and so might be paired with another one-
sided bin in the algorithm’s output.

Type 2 Small Bins - A type 2 small bin will be a one-sided bin that is at most
0.3125 full. All but a constant number of these bins will be matched with another
Type 2 one-sided bin, and share an output bin when the algorithm terminates.

Each Small Item category will have a specified number of items per type
1, type 2 large, and type 2 small bin listed in the appendix. Very Large Items
will be packed exclusively into type 1 bins containing 1 item, while Large and
Medium Items are packed exclusively into type 2 large bins containing 1 item.
Third Items will be exclusively packed into type 2 large bins, although some will
contain 1 item while others will contain 2. Further, the type 2 bins containing
2 items may be shuffled so that the items initially in the same one-sided bin
are not packed in the same bin when the algorithm terminates. However, every
Third Item will end in a bin with the same number of items as the one it was
initially assigned to. The exact packing mechanism is detailed below.

Type 2 bins will have a further designation of being a left or right sided bin.
Simply, a left sided type 2 bin will have the first item placed at position 0 with
subsequent items placed closer to 1, while a right sided type 2 bin will have the
first item placed at position 1 with subsequent items placed closer to 0. The
scheduling process detailed below will ensure some amount of balance between
the left and right sided bins.

Complete Sets of One-Sided Bins. Items from each particular category will be
packed into Complete Sets of One-Sided Bins, referred to interchangeably
as complete sets. For each item category, a complete set of one-sided bins will be
a certain number of type 1, type 2 large, and type 2 small bins. Further, every
complete set will contain an even number of type 2 small and type 2 large bins,
with half packed on either side. For Very Large Items, a complete set will have
1 type 1 bin, while for Large and Medium Item categories a complete set will
have 2 type 2 large bins. For Quarter Items, a complete set will have 1 type 1
bin containing 3 items, 2 type 2 large bins containing two items, and 4 type 2
small bins containing 1 item.

For Third Items, a complete set will have 4 type 2 large bins containing 1 item
each, and 2 type 2 large bins containing 2 items each. These will be referred to
as Outer Bins and Inner Bins respectively. This distinction will be important
in later analysis. Further, unlike other one-sided bins with multiple items, it will

88 D. Smedira and D. Shmoys

be important for inner bins to be packed so that either item can be placed first.
Therefore, the interior item of inner bins will be placed exactly 0.34375 from the
left or right border, depending on the side of the bin, to accommodate another
Third Item of any size. This will also allow any interior left item in an inner bin
to be paired with any exterior left item in an inner bin of the same side.

During the scheduling phase, items arrive one at a time. Therefore, it is not
always possible to maintain complete sets throughout the algorithm’s execution.
A Partial Set of One-Sided Bins will refer to a complete set of one-sided
bins that has been allocated by the algorithm but has not yet had every item
spot filled.

Arrival Scheduling. This section will detail the actual procedure used for the
scheduling phase of the algorithm. When an item arrives, the first step to schedul-
ing is to determine of what category it is a member. Then, the algorithm deter-
mines whether or not a partial set of matched bins exists for that category,
creating a new one if one does not exist. Then,

For Very Large items, a partial complete set only contains 1 type 1 bin, so
the item is placed in it and the set is marked as being completed.

For Large and Medium items, a complete set of bins only contains two 1
item bins. So if the partial set has one of the type 2 large bins filled, the other
bin is filled with the item and the set is marked as completed. Otherwise, the
side of the bin the item is placed on is chosen randomly with equal probability.

For Third items, the item scheduling process has several steps. Within the
partial set, if there are more items in inner bins than outer bins then mark the
new item for an outer pair and vice versa. If the item is marked for an outer
bin, place it in a type 2 large bin on the side with fewer items, or randomly with
equal probability if there are the same number of items on each side. If the item
is marked for an inner bin, first choose whether to place it in the left or right
side bin based on which has fewer items, or randomly if they are equally full.
Finally, place it on the edge of the bin if there is an item in the interior already
and vice versa. Again choose randomly if both spots are not filled. If there are no
more open spots in the partial set, mark the set as completed. This complicated
procedure will play an important role in future analysis.

For Small items, items can be placed arbitrarily among the open spots within
a partial set of the correct category. If there are no more open spots in the partial
set after the item is placed, mark the set as completed.

The above procedure will ensure that each item category has at most 1 partial
set of one-sided bins at any time during execution. Thus, when the scheduling
phase terminates, there will be a finite number of partial sets, allowing them to
be ignored in the final analysis.

2.2 Rematching

The second phase of the algorithm will be an offline rematching phase. This step
will take all of the items that are already committed to a position within the
bin and assign them to final bins in a manner such that no two items within a

Scheduling Appointments Online: The Power of Deferred Decision-Making 89

bin overlap. For the sake of this overview and the analysis, it will be sufficient
to simply say that items from some category were rematched with items from
another category. The exact details of how the rematching puts items into bins
is detailed in Appendices B and C.

Large and Very Large Items. Very Large Items are exclusively put into type 1
bins, and as such will not need to be rematched by the algorithm. Each Very
Large Item will end up in its own bin when the algorithm finishes.

Large Items are exclusively put into type 2 large bins, and can not fit in a
bin with another Large Item. They will be used to rematch with smaller items,
detailed below. Though complete sets of Large Items contain two Large Items,
the individual items may be rematched with different sets during the rematching
process.

Medium Items. As is the case with Large Items, Medium Items may not be
packed with the other item originally in the same complete set. Rather, each
item will be used individually in the rematching stage. A Medium Item can be
matched in a bin with another Medium Item of the same category or matched in
a bin with a Large Item on the opposite side if the Large Item is small enough
to fit with the Medium Item. At most 1 Medium Item per category will not be
matched in one of these two ways. Depending on the distribution of items, five
bins of Medium Item pairs may be grouped with 11 bins containing single Large
Items for the algorithm’s analysis.

Medium Items not in the Half Item category can also be rematched with
Large Items and a complete set of Quarter Items.

Third Items. As is the case with Large and Medium Items, Third Items in the
same complete set initially may not be placed in the same group of bins during
the rematching process. In fact, Third Items in inner bins may end up placed in
an inner bin with a different item than originally matched with. However, Third
Items will always be matched in units of complete sets, unlike the Large Items
which may not be.

Third Items can be rematched with Large Items if the Third Items in the
outer bins and the Large Items can fit in a bin. In this case, the four outer bins
will be matched with a Large Item in a bin, the two inner bins will be assigned
their own bin, and a 5th Large Item will be assigned its own bin and grouped
with the rematched set. Third Items may also be grouped with Large Items that
do not fit in a bin with the outer bins. In this case, 11 bins containing a Large
Item will be grouped for every 5 bins containing two Third Items. Complete
sets of Third Items may also be rematched with complete sets of Small Items as
detailed below.

Third Items can also be rematched with Large Items too large to share a bin
with and a complete set of Quarter Items.

Small Item Categories. During the rematching process, every complete set of
Small Items may or may not be rematched with other complete sets to assign

90 D. Smedira and D. Shmoys

one-sided bins to bins. Any complete set of Small Items not rematched with
other items will have every one-sided bin assigned to bins only with other one-
sided bins from the same set. This set of bins will be referred to as a Complete
Set of Matched Bins.

All Small Item categories can have their complete sets grouped with other
complete sets from different categories to form a Complete Set of Rematched
Bins. A complete set of rematched bins will consist of bins containing some
combinations of one-sided bins from a complete set of Small Items and one-
sided bins from a different item category. The terms complete set of rematched
bins and a complete set of bins rematched with, followed by whatever the bins
are rematched with, will be used interchangeably.

For any small category besides the Quarter Item category, a complete set of
bins can be rematched with Large Items, one or more complete sets of Third
Items, Large Items and one or more complete sets of Quarter Items, or one or
more complete sets of Third Items and one or more complete sets of Quarter
Items.

In addition to all the previously listed cases, a complete set of Quarter Items
can also be rematched with Large Items.

Rematching Procedure. The algorithm will use the following outlined procedure.

Step 1 - Rematch Large Items with Third Items
Sort both the left and right Third Items in outer bins in increasing order, and
do the same for all four item positions in the inner bins. Also sort the left and
right Large Items in increasing order.
As long as there remains complete sets of Third Items and Large Items on both
sides, check if the first two outer left Third Items fit in a bin pairwise with the
first two right Large Items, and vice versa. If they do not, then move to the next
step. If they do, place the outer one-sided bins in a final bin with the Large Item.
Then form a right and left inner bin by taking the first item from each respective
list and place both inner bins in separate bins. Finally, take the largest Large
Item from whichever side has more items (arbitrarily if a tie) and place it in a
bin by itself.
Step 2 - Rematch Large Items with Medium Items
Sort both the left and right Medium Items in increasing order, and do the same
for the left and right Large Items. As long as there remains Large and Medium
Items on both sides, check if the first left Medium Item fits in a bin with the
first right Large Item and vice versa. If they do not, move to step 3. Otherwise,
place both pairs into a bin together and repeat.
Step 3 - Rematch Large Items with Third and Quarter Items
Sort both the left and right Third Items in outer bins in increasing order, and
do the same for all four item positions in the inner bins. Also sort the left and
right Large Items in increasing order. As long as there remains complete sets of
Third Items, complete sets of Quarter Items, and enough Large Items on both
sides, do the following. Take 7 Large Items from each side, a complete set of
Quarter Items, and a complete set of Third Items and rematch them together.

Scheduling Appointments Online: The Power of Deferred Decision-Making 91

Step 4 - Rematch Large Items with Medium and Quarter Items
Sort both the left and right Medium Items in increasing order, and do the same
for the left and right Large Items. As long as there remains non-Half Medium
Items on each side, complete sets of Quarter Items, and enough Large Items
on both sides, do the following. Take 4 Large Items from each side, a complete
set of Quarter Items, and one Medium Item from each side and rematch them
together.
Step 5 - Rematch Large Items with Complete Sets of Small Items
While there remains complete sets of Quarter Items and complete sets of small
non-Quarter Items, rematch them together with the appropriate number of Large
Items. Do this until there are not enough Large Items or complete quarter sets,
or until all non-quarter complete sets have been used.
If complete sets of non-quarter Small Items and enough Large Items remain,
continue rematching them until one runs out.
Step 6 - Rematch Third Item sets with Complete Small Item Sets
While there remains complete sets of Quarter Items and complete sets of small
non-Quarter Items, rematch them together with the appropriate number of com-
plete Third Item sets. Do this until there are not enough complete Third Item
sets or complete quarter sets, or until all non-quarter complete sets have been
used.
If complete sets of non-quarter Small Items and enough Third Item sets remain,
continue rematching them until one runs out.
Step 7 - Rematch Large Items with Complete Sets of Quarter Items
Rematch Large Items with complete sets of Quarter Items until one runs out.
Step 8 - Rematch Complete Sets of Third Items with Complete Sets of Quarter
Items
Rematch complete sets of Third Items with complete sets of Quarter Items until
one runs out.
Step 9 - Group Large Items with Third Items and Medium Items.
While there remains Large Items and either Medium or Third Items that are
not placed in a bin, group bins containing two Third/Medium Items with bins
containing Large Items at a ratio of 5 third/medium bins to 11 large bins.
Step 10 - Assign Remaining Large and Very Large Items to Their Own Bins.

2.3 Example Category Packing

In the interest of clarifying the algorithm the following section will be dedicated
to describing the matching procedure for the category of items in the range
(0.215, 0.23].

Matched Set. A complete set of items from this category will consist of four type
2 large bins each containing two items and two type 2 small bins each containing
1 item. A complete set of matched bins will be formed from this category by
placing both type 2 small one-sided bins in a bin together, and by putting the
four type 2 large one sided bins into two bins. Figure 1 below demonstrates how
this matching is done, with the blue representing items from the category and
the grey representing empty space in the bin.

92 D. Smedira and D. Shmoys

Fig. 1. A complete set of matched bins (not to scale)

Rematched Set. To fully specify the behavior of rematching with this item cat-
egory, five different rematching alignments would need to be specified. These
would be the complete set rematched with

1) Large Items of size under 0.54
2) Large Items of size over 0.54
3) A complete set of Third Items
4) Large Items and a complete set of Quarter Items
5) A complete set of Third Items and a complete set of Quarter Items.

Figure 2 demonstrates case 2 on the left and case 4 on the right, with blue repre-
senting items in the category, orange representing Quarter Items, red represent-
ing Large Items, and grey representing empty space in the bins. The presented
matchings will only have a Large Item in 2 out of every 3 bins, instead of the
later purported 0.6875 Large Items per bin. This can be rectified by assigning
an additional Large Item for every 15 rematched bins, a process detailed in the
appendix.

Fig. 2. Example complete sets of rematched bins (not to scale)

Different item categories will have different packing protocols and different
cases than the 5 listed above. But, they will all follow this general pattern on
small type 2 bins being matched with Large Items (or 2 Medium Items), while
type 2 large bins are matched with small Large Items, each other, or Quarter
Item type 2 large bins.

Scheduling Appointments Online: The Power of Deferred Decision-Making 93

3 Analysis

In this section, we will upper bound the asymptotic competitive ratio of our
algorithm. More formally, we define the asymptotic competitive ratio to be the
infimum of the set of all α satisfying

lim
N→∞

sup
I:OPT(I)≥N

Pr
[ALG(I)
OPT(I)

≤ α + ε] = 1

where I ranges over all possible inputs to the MPAS problem, OPT(I) is the
number of bins used in an optimal solution to the MPAS problem instance I
(equivalent to the number of appointments at the peak time), ALG(I) is the
number of bins used by the proposed algorithm for that instance, and ε is any
real number greater than 0. The probability in the above statement is taken with
respect to the random choices of the algorithm. Notice that the rematching phase
of the algorithm is not guaranteed to use the fewest number of bins possible for
the given schedule, so ALG(I) might actually be an overestimate of the MPAS
objective of the algorithm’s scheduling.

Theorem 1 (Asymptotic Competitive Ratio). The asymptotic competitive
ratio of the algorithm presented in Sect. 2 is at most 16

11 .

To prove the bound, the analysis that follows will show that for any execution
of the algorithm on an instance of the online MPAS problem I, all of the bins
used by the algorithm will fall into one of three categories. The first will be
the additive constants bins, the number of which will be bounded above by a
constant K independent of the input I. The second will be the imbalanced bins,
the number of which will follow some distribution K(I) for each input instance
I satisfying, for any positive ε:

lim
N→∞

sup
I:OPT(I)≥N

Pr
[K(I)
OPT(I)

≥ ε
]

= 0

The third category will be the packed bins, which will be the primary focus
of this section and denoted as P (I). The analysis of the packed bins is based on
the dual of a bin-packing linear programming relaxation (often referred to as the
configuration LP for bin-packing). For each of five separate possible scenarios in
which the rematching process might end, a feasible solution to the dual program
will be created such that the dual objective D will satisfy 11

16P (I) ≤ D, which
will in turn imply that 11

16P (I) ≤ OPT(I) by weak duality and the fact that
the linear relaxation optimal solution is a lower bound on OPT(I). This will be
sufficient to prove the result.

3.1 Properties

In order to conduct the analysis of the algorithm’s performance, a few core
properties of the algorithm must be established. Each of the following properties
have been verified for each of the relevant categories.

94 D. Smedira and D. Shmoys

Property 1 (Average Fullness). For each Small Item category, a complete set of
matched bins will have an average fullness of at least 0.6875 per bin.

Property 2 (Rematched Fullness). For each Small Item category excluding Quar-
ter Items, a complete set of bins rematched with Large or Third Items will have
an average fullness of at least 0.6875 per bin. Further, this packing will have
at least 0.6875 Large Items for every bin or 1.375 Third Items for every bin on
average.

Property 3 (Quarter Rematched Fullness). For each Small Item category exclud-
ing Quarter Items, a complete set of bins rematched with Quarter Items and
Large or Third Items will have an average fullness of at least 0.6875. Further,
this packing will have at least 0.6875 Large Items for every bin or 1.375 Third
Items for every bin on average.

Property 4 (Quarter Size Reallocation). For each Small Item category excluding
Quarter Items, a complete set of bins rematched with Quarter Items and Large
or Third Items will satisfy 0.3125q+0.34375t+0.6875l ≥ 0.6875b, where q is the
number of items of size in (1/4, 1/3]; t is the number of Third Items in the set;
l is the number of Large Items in the set; b is the number of bins the set uses.

Complete sets of Quarter Items will satisfy this property whether or not they
are rematched with something else.

Like the exact details for matching each item category, the complete verifi-
cation of these four properties appears in the appendix. These properties will be
used in the remainder of the work.

3.2 Configuration Bin-Packing LP

The analysis will rely on providing a bound on the minimal number of bins the
items could be packed in using a bin-packing linear program relaxation. Define C
to be the set of all valid configurations of items from an instance to the MPAS
problem, where a configuration is a set of items that can be feasibly packed
together within one bin. Let I be the set of all items in the MPAS instance, with
each individual element receiving its own entry; in other words, even if there are
two items of the same size, they will be viewed as distinct items. Further define
C(i) to be the set of configurations containing the element i. One possible linear
program relaxation of the bin-packing problem is as follows:

Minimize
∑

c∈C

yc

Subject To
∑

c∈C(i)

yc ≥ 1 ∀i ∈ I

yc ≥ 0 ∀c ∈ C

Intuitively, the yc variables in this program will represent the number of bins
which are packed according to configuration c in a solution. Since this is a relax-
ation, it is entirely possible that a particular yc is not an integer value. However,

Scheduling Appointments Online: The Power of Deferred Decision-Making 95

since each configuration contains specific items, no optimal solution will ever
have yc > 1. The dual of this program will be:

Maximize
∑

i∈I

xi

Subject To
∑

i∈c

xi ≤ 1 ∀c ∈ C

xi ≥ 0 ∀i ∈ I

This program will be the one utilized to complete the analysis. Each dual variable
xi intuitively represents assigning a size to a particular item. In this sense, it
will be possible to give more or less weight to certain specific items to change
the dual objective. The set of additive constraints essentially says that no valid
bin configuration can have the weights of its items sum to more than 1. It will
be convenient going forward to label the size of an item i as wi.

3.3 Additive Constants Bins

This section will identify the sources of the Additive Constants Bins, as well as
justify why there must be at most a constant number of them without explicitly
calculating the constant K. Throughout the algorithm’s execution, there are
several stages where items from a specific category will need to be used in some
quantity, but that quantity will not be available. These shortages, detailed below,
will not play a role in the final analysis.

Small Category Imbalance of Size-Dependent Scheduling. Some Small Item cat-
egories have analysis of fullness dependent on being rematched with Large Items
either all larger or all smaller than a certain threshold. There may not be enough
large items of the correct size to rematch with, but if that is the case then there
must be at most a certain number of Large Items remaining of that size that
have not already been rematched. Each such threshold is a boundary between
different Large Item categories, so this problem cannot arise from an imbalance
of item sizes on each side. Thus, if this problem arises, every remaining Large
Item can be placed into its own bin and those bins can be incorporated into the
additive constant for the analysis.

Partial Sets. Each category can only have at most 1 partial set of one-sided
bins at any point during the scheduling phase. Thus there will be only a finite
number of items in partial sets when the scheduling phase ends using only a
finite number of bins. These bins can be grouped into the additive constant in
the analysis.

Insufficient Items to Rematch. The rematching phase has several sections with
instructions that simply state something along the lines of rematch this item
group with some other specified item group. This may not be possible even if
items still remain if, for example, there are only 2 Large Items left but 6 needed.

96 D. Smedira and D. Shmoys

But, if such a problem arises, the category causing the problem will have at
most only a certain number of items left to rematch. These leftover items can be
placed in their own bins and grouped into the additive constant for the analysis.

3.4 Bounded Imbalanced Bins

In the following sections where the multiplicative bound is derived for the packed
bins, the following property will be necessary in some cases of the analysis:

Property 5 (Balanced Bins). After the rematching phase of the algorithm is com-
plete, all Large and Very Large Items not matched to a bin with a Medium or
Third sized item can not fit in a bin with any Medium sized item not matched to
a bin with a Large Item. Further, all Large and Very Large Items not matched
to a bin with a Medium or Third sized item can not fit in a bin with any Third
sized item in a complete set which does not have a Large and Third Item sharing
a bin in its final matching.

It is relatively easy to see that this property does not necessarily hold in the
described algorithm. The remainder of this section will be dedicated to proving
that, for any positive ε,

lim
N→∞

sup
I:OPT(I)≥N

Pr
[IMB(I)
OPT(I)

≥ ε
]

= 0

where IMB(I) represents the number of items that do not satisfy the balanced
bins property. With this proven, the analysis can be completed by assuming the
balanced bins property and taking items that defy it and placing them into their
own bins. These extra bins will be the imbalanced bins and counted in the K(I)
component of the competitive analysis.

Large and Medium Items. Let Lc denote the number of Large Items in each
large category c and Mc the Medium Items in each medium category c. For any
large category c and any x, define nc(x) to be the number of large items of size
greater than or equal to x in instance I. Further, define Lc(x) to be the number
of large items of size greater than or equal to x placed on the right side minus
the number of such items placed on the left in category c. Define Mc(x) similarly
for medium jobs.

Consider the items in the category c smaller than x. Some of those items may
arrive consecutively and be placed on opposite sides in a guaranteed manner,
contributing a net of 0 to Lc(x). The remainder will be randomly assigned a
side to be placed on, independent of the placement for the other items by the
algorithm’s design. Thus, Lc(x) can be represented as a sum of at most nc(x)
independent random variables Si, which take value 1 (if the item is placed on
the right) or −1 (if the item is placed on the left) with equal probability.

Now, consider the behavior of Lc(x) for some x as the optimal solution of
the inputs I grows arbitrarily large. If nc(x) does not grow with OPT(I), then

Scheduling Appointments Online: The Power of Deferred Decision-Making 97

|Lc(x)|
OPT(I) must approach 0, since Lc(x) is bounded above by nc(x). However, if
nc(x) does grow with OPT(I), then, in the worst case, Lc(x) is the sum of nc(x)
independent random variables Si. Since each Si has a mean of 0, the law of large
numbers [5] will imply

lim
nc(x)→∞

Pr
[|Lc(x)|

nc(x)
≥ ε

]
= 0 for any ε > 0.

Therefore, observing that for any input instance I, at least nc(x) bins must
be used, the values Lc(x) for each category c and each cutoff x must satisfy the
desired property of IMB. Notice a similar argument can be made to show that
the values of Mc(x) also satisfy the property.

Now, consider the first time a Large and Medium Item on opposite sides
cannot be matched together in the same bin. Assume without loss of generality
this happens on the left for the Medium Items and right for the Large Item. Let
xm be the size of the Medium Item which cannot be matched, let cm be the
category of the Medium Item, let xl be the size of the large item which cannot
be matched, and let cl be the category of the Large Item. At that point, any
violations of the balanced bins property must be by items in the same category
as either the unmatched large or the unmatched medium item. These violations
must also happen because an item could fit in a bin with either a Medium Item
on the right or a Large Item on the left respectively.

Removing the next Lcl(xl) Large Items from both sides and the next
Mcm(xm) Medium Items from both sides will lead to the Balanced Bins Prop-
erty being satisfied for Large and Medium Items. These items can be stored in
2Lcl(xl) + Mcm(xm) bins, which by the above reasoning is sufficiently small in
the limit.

Third Items. The proof of the property for Third Items follows the same pattern
as the above section, but applies the law of large numbers all four times there is
a binary split on item placement. Then, the number of Third Items which do not
satisfy the Balanced Bins property can be bounded above by the sum of the 4
imbalances. These imbalances will again be asymptotically small as the number
of items increases, just as in the above section. Since this analysis offers no new
insights from the previous one, it will be omitted.

3.5 Multiplicative Bound on Packed Bins

The following section will prove the multiplicative bound for the asymptotic com-
petitive ratio result. Specifically, this section will bound the number of packed
bins after the algorithm finishes in terms of the linear program established above.
In what follows, all five properties above will be assumed, and the additive con-
stants addressed above will be ignored. Thus, this section will provide an input
to the dual linear program which produces an objective over 11

16 times the num-
ber of bins used in complete sets of matched bins, complete sets of rematched
bins, and additional excess Large, Medium, and Third Item bins.

98 D. Smedira and D. Shmoys

Case 1 - No Adjustment. Suppose during the algorithms execution, every Large
Item is either rematched with Medium/Third Items or rematched into a Small
Item complete set. Further suppose that every complete set of Third Items is
rematched in some manner, whether with Large Items, Large Items and Quarter
Items, a complete set of Small Items, or Quarter Items and a complete set of
Small Items.

Complete matched Quarter Item sets have an average fullness of at least
0.6875, as do any other matched complete sets. Further, every rematched com-
plete set will have an average fullness of at least 0.6875, as will rematched sets
containing Quarter Items. Medium Items matched with Large Items have a per
bin fullness over 0.6875, as do bins containing two Medium Items. Finally, bins
containing one Very Large Item are at least 0.6875 full. Thus, for each item i,
one can set xi = wi in the dual to get a dual objective of at least 11

16 times the
number of bins used.

Case 2 - Excess of Third Items. Suppose during the algorithms execution, every
Large Item is either rematched with Medium Items or rematched into a Small
Item complete set. Further suppose that not every complete set of Third Items is
rematched. This will imply every complete set of Small Items (including poten-
tially Quarter Item sets by themselves) are in complete sets of rematched bins.

In this case, it is possible to use the dual program to achieve the necessary
bound. Set xi = 1/2 for all Medium Items (including Third Items) and Large
Items matched with Medium Items, and set xi = 1 for unmatched Large Items
and Very Large Items. Set xi = 0 for the remaining items. This will be a valid
input to the dual program by the balanced bins property above. By the fullness
properties, every set will have 0.6875 Large Items or 1.375 Third Items per bin,
so will contribute 0.6875 to the dual per bin. Every other bin will contain either
2 Medium Items, a Medium Item and Large Item matched, or 1 Large Item,
and thus contribute 1 to the dual objective per bin. Therefore, every bin will on
average contribute at least 0.6875 to the dual objective, so this objective will be
at least 11

16 times the number of bins the algorithm uses.

Case 3 - Excess of Quarter Items. Suppose there are complete Quarter Item
sets directly rematched with Large Items or Third Items, but not every such set
is rematched. This will imply that every Large and Third Item set is rematched
with other items in this instance. Further, every non-quarter Small Item category
will be in rematched complete sets of bins and every item size under 1/4 will be
rematched with Quarter Item sets.

In this case, it is possible to set xi = 0.3125 for every item with size
in (1/4, 1/3], Third Items, and Medium Items matched with Large Items,
xi = 0.34375 for Medium Items not matched with Large Items, xi = 0.5 for
Large Items matched with a Medium Item, and xi = 0.6875 for Large Items not
matched with a Medium Item. The balanced bins property will ensure this is a
valid input to the dual program.

With these dual variable values, the quarter size reallocation property will
guarantee that every complete set of rematched bins contributes at least 0.6875

Scheduling Appointments Online: The Power of Deferred Decision-Making 99

the dual objective per bin. Further, every bin containing two Medium Items will
contribute 0.6875 to the objective, and every bin containing a Medium and Large
Item will contribute well over this amount. Therefore, every bin will on average
contribute at least 0.6875 to the dual objective, so this objective will be at least
the 11

16 times the number of bins the algorithm uses.

Case 4 - Unmatchable Large Items. Suppose that every Small Item set is
rematched with Large Items, but not all such sets are rematched with Quar-
ter Items. Further, suppose there are Medium Items or Third Item sets that
cannot be matched with Large Items, and not enough Large Items to assign 11
Large Items for every 5 bins of unmatched Third and Medium Items.

Take the smallest unmatched Medium Item or smallest Third Item in a com-
plete set not rematched with Large Items, and assume it has a weight of 1 − w.
This implies every Large Item not matched with a Medium Item will have size
at least w by the balanced bins property. Now, for every 5 bins containing two
Medium or Third Items, there will need to be 11 bins containing 1 Large Item
for every set to have at least 0.6875 Large Items per bin. Further, this set must
contribute 0.6875 per bin to the dual value. Thus, each Large Item not paired
with a Medium Item will have its dual variable set to some value w + x. Solving
(2(1 − w) · 5 + 11(w + x))/16 = 0.6875, it must be that x = 1/11 − w/11.

Each Large Item not paired with a Medium Item will have xi = 10wi/11 +
1/11. Medium Items not paired with a Large Item will have xi = wi, as will
Large Items paired with Medium Items. For the remaining items to fit, it must
be that xi = 1−10w/11−1/11

1−w wi = 10wi/11. A bin containing a Medium and
Large Item will contribute at least 1/2 + 0.34375 · 10/11 > 0.6875 to the dual
objective. Further, a set of Third Items rematched with Large Items will have 6
Large Items matched with Third Items and 1 Large Item not, so will contribute
at least (0.3125 · 8 · 10/11 + 0.5 · 4 + .5 · 10/11 + 1/11)/7 > 0.6875 per bin
to the dual objective. For all other complete rematched sets, they will have
an average fullness of at least 0.6875 by properties 2 and 3. Thus, for every
16 bins in complete rematched sets with Small Items, there will be at least
11 Large Items and a density of at least 0.6875 per bin, leading to at least
(10(0.6875 · 16 − 11w)/11 + 11(10w/11 + 1/11))/16 = 0.6875 being contributed
to the dual objective per bin. Therefore, every bin will on average contribute at
least 0.6875 to the dual objective, so this objective will be at least 11

16 times the
number of bins the algorithm uses.

Case 5 - Excess Large Items. Suppose there are enough Large Items to be
rematched with every other item category and group with unmatched Medium
or Third Items with some Large Items left over. If this is the case, simply setting
xi = 1 for each item of size above 0.5 and xi = 0 for all other items will contribute
over 0.6875 per bin to the dual objective by the rematched fullness property, the
Quarter Item rematched fullness property, and the manner with which Large
Items are grouped with unmatched Medium and Third Items. So this objective
will be at least 11

16 times the number of bins the algorithm uses.

100 D. Smedira and D. Shmoys

3.6 Completing the Proof of Theorem 1

The work in Sect. 3.5 is sufficient to show that for any online MPAS instance I
and any execution of the algorithm, the number of packed bins P (I) established
satisfies

11
16

P (I) =
11
16

(ALG(I) − K − K(I)) ≤ D

with K being the upper bound on the number of additive constants bins from
Sect. 3.3, K(I) being all of the bounded imbalance bins identified in Sect. 3.4,
and ALG(I) being the number of bins the algorithm uses after its rematching
process. Therefore, it must be that for any ε > 0,

lim
N→∞

sup
I:OPT(I)≥N

Pr
[ALG(I)
OPT(I)

≤ α + ε]

≥ lim
N→∞

sup
I:OPT(I)≥N

Pr
[P (I)
OPT(I)

≤ α] − Pr
[K + K(I)

OPT(I)
≥ ε]

= 1 − 0 = 1

Thus, the asymptotic competitive ratio of the algorithm is at most 16
11 , proving

the claim.

4 Lower Bounds

This section will prove a lower bound of 1.2 on the asymptotic competitive ratio
for any deterministic online MPAS algorithms. Then, a similar technique will be
used to prove no randomized algorithm can achieve an asymptotic competitive
ratio below 1.2 in expectation.

4.1 Deterministic Lower Bound

The same family of inputs is used to construct both the deterministic and ran-
domized lower bounds for the MPAS problem. Though the deterministic result
is implied by the randomized result, a deterministic lower bound is easier to
prove and conceptualize. Thus, this subsection will be dedicated to proving the
theorem below, before the full result in the next subsection.

Theorem 2 (Asymptotic Deterministic Lower Bound). Any determinis-
tic algorithm for the online MPAS problem must have an asymptotic competitive
ratio of at least 6

5 = 1.2.

Proof. Consider the set of inputs to the MPAS problem restricted to items of
size 1

3 and 2
3 . For any such input, there must be an optimal solution that only

places items of size 1
3 on either edge or in the exact center and only places items

of size 2
3 on an edge. Moving an item of size 2

3 from wherever it is placed to its
closest edge can not increase the number of items scheduled at the same time,
since each item is at least of size 1

3 . The same is true for items of size 1
3 not

placed exactly in the middle of a bin.

Scheduling Appointments Online: The Power of Deferred Decision-Making 101

Now, take any deterministic algorithm for the online MPAS problem which
only schedules 1

3 items in the middle or on an edge, and 2
3 sized items on an edge,

and choose some integer n. Consider an input to the algorithm with n items of
size 1

3 . If the algorithm schedules at least 1
5 of those items in the center, then

subsequently send n items of size 2
3 ; otherwise the input consists only of the first

n items.
If under 1

5 of the 1
3 sized items were placed in the middle, then at least 2

5 of
the items would have been placed on either side. Thus, the algorithm will have
at least 2n

5 items at the peak appointment time, whereas the off-line optimum
would have packed 3 items to a bin for a peak appointment of n

3 . Thus, the
algorithm must have achieved a competitive ratio of at least 6

5 on this input.
Conversely, if over 1

5 of the 1
3 -sized items were placed in the middle, then

there must be at least n + n
5 items scheduled at the middle point in the day.

But, an optimal solution would schedule each 2
3 item with a 1

3 item, for a peak
appointment of n. Thus, the algorithm would have achieved a competitive ratio
of at least 6

5 on this input.
Since these properties hold for all n, taking n to infinity and using this same

pattern will create a sequence of inputs with an optimal solution tending toward
infinity where every algorithm achieves a competitive ratio of at least 6

5 on every
input. Thus, the asymptotic competitive ratio of any deterministic algorithm
must be at least 6

5 .

4.2 Randomized Lower Bound

A lower bound on the performance of any randomized algorithm for the MPAS
problem will be developed in this section by first analyzing a simpler request-
answer game (see, e.g., [6]). Consider a game where a requester can request an
item be placed, either of size 1

3 or 2
3 , and a responder needs to answer with a

location within a bin to place the item. Further, define the cost function for this
game to be the peak utilization within the bin, as in the MPAS problem. It is
easy to see that this game is equivalent to the MPAS problem with item sizes
restricted to 1

3 and 2
3 , and thus any lower bounds on the game’s asymptotic

competitive ratio will bound the asymptotic competitive ratio of the MPAS
problem.

Theorem 3 (Request-Answer Asymptotic Randomized Lower
Bound). The above request-answer game has an asymptotic competitive ratio
of at least 6

5 = 1.2.

Proof. Let σn be the family of request sequences consisting of n consecutive 1
3

requests, and let γn be the family of request sequences consisting of n consecutive
1
3 requests followed by n consecutive 2

3 requests. Let yn be a family of probability
distributions over request sequences, with yn(σn) = 2

5 , yn(γn) = 3
5 , and yn(j) = 0

for all other j.

Choose some n a multiple of 3. Now, take any deterministic algorithm ALG
for the responder, which when presented with n consecutive items of size 1

3 ,

102 D. Smedira and D. Shmoys

places c of them in the middle position of a bin. Since every bin with 3 items
must have an item in the middle and every item in the middle of a bin will have
to conflict with an item of size 2

3 , the following must be true:

Ey∈yn

[
ALG(y)
OPT(y)

]
=

2
5

ALG(σn)
OPT(σn)

+
3
5

ALG(γn)
OPT(γn)

≥ 2
5

c + (n − 3c)/2
n/3

+
3
5

n + c

n
=

6
5

By Yao’s principle, it must be that the competitive ratio of any randomized
algorithm for this game is at most 6

5 against an oblivious adversary [6]. Further,
the above inequality will hold for any n which is a multiple of 3, which allows
for the creation of arbitrarily large hard inputs. Adding a lower bound to the
game on the cost of valid inputs will not change the lower bound, since one can
just take n to be sufficiently large to satisfy the cost lower bound. Thus, the
competitive ratio must remain bounded below by 6

5 for any minimum optimal
cost, implying the asymptotic competitive ratio for this problem is at least 6

5 as
well.

This result will directly imply the main theorem for this section, by the line
of reasoning at the start of this section.

Theorem 4 (Asymptotic Randomized Lower Bound). Any random algo-
rithm for the online MPAS problem must have an asymptotic competitive ratio
of at least 6

5 = 1.2.

5 Conclusions and Future Work

The work done in this paper provides an improvement to the asymptotic com-
petitive ratio of the MPAS problem compared to previous work. It further proves
that 1.5 is not a lower bound for this problem, and invites even further improve-
ments. Moving forward, proving a lower bound on the asymptotic competitive
ratio would help future analysis of this problem be more focused and guided. It
is also a hope to reimagine other known online problems and study how decisions
can be delayed and what properties emerge from such analysis.

A Particularly Hard Input

It is possible to show that the asymptotic competitive ratio derived for the given
algorithm is nearly the best possible. For any integer n, construct an input to the
MPAS problem containing 2n items of size 0.3438, n items of size 0.2501, and n
items of size 0.0623. Since this input has no Large or Third Items, the algorithm
will pack this input in the same manner regardless of the order items arrive. The
optimal way to pack these items is to put two of the items of size 0.3438 in a
bin with one of each of the other items, requiring exactly n bins. However, as n
goes to infinity, the algorithm will pack sets of two items of size 0.3438 to a bin,
sets of 11 items of size 0.2501 to 4 bins, and sets of 54 items of size 0.0623 to 4
bins. This will result in the algorithm using roughly n(1 + 4/11 + 4/54) = n 427

297
bins, for a competitive ratio of 427

297 > 1.437.

Scheduling Appointments Online: The Power of Deferred Decision-Making 103

B Configuration Strategies

This section will detail a few important configuration strategies, which are used
implicitly in the following section.

B.1 Alternating Sides

Every complete set will have an even number of type 2 bins, and in the following
section half of them will be on either side. Further, when rematching with Large
Items, half of the Large Items will be on each side.

B.2 Type 2 Small Bins

When rematching a Small Item category with Large or Third Items, any type 2
small bins within the complete set of bins will be placed in a bin with a Large
Item or inner bin respectively.

B.3 Rematching with Different Large Item Categories

Several of the Small Item categories will have different rematching guidelines
depending on the size of the Large Items (when rematching with only Large
Items). In every such case, the smaller size will have every type 2 large bin
assigned to the same bin as a Large Item, while the larger case will have type 2
large bins assigned to a bin with another type 2 large bin.

B.4 Rematching with Quarter Item Sets

When rematching Small Item sets with a Quarter Item set and some other items,
any type 2 large bins in the Small Item set will be rematched with the type 2
large Quarter Item bins if possible. This will leave the Quarter Item type 2 small
bins to be rematched with Large Items or inner bins.

B.5 Rematching with Large Items

The properties the above analysis uses rely on there being 0.6875 Large Items
for every bin after a rematching with a Small Item category, with an average
fullness of at least 0.6875. In what follows, what will be shown is how to rematch
so there are at least two Large Items per 3 bins, and an average density of at
least 0.7. This is an equivalent statement, since for every 15 rematched bins an
extra Large Item in its own bin can be assigned, leading to 11 Large Items for
16 bins with an average fullness of at least 11/16.

C Category List and Matching Process Description

This section will be dedicated to going through each Small Item category, detail-
ing the manner in which they are packed, and verifying all relevant properties
used above for the category.

104 D. Smedira and D. Shmoys

C.1 Very Large Items

Very Large Items will only have one category, and do not get rematched.

C.2 Large Items

The interior cutoffs for the Large Item categories will be:
2
3 , 0.642, 0.635, 0.625, 0.6, 0.588, 0.57, 6

11 , 0.54
Rematching with Large Items is detailed in the relevant item category.

C.3 Medium Items

The interior cutoffs for the Medium Item categories will be:
0.358, 0.365, 0.375, 0.4, 0.412, 0.43, 5

11 , 0.46
Medium Items rematch with Large Items by being placed in the same bin as

a Large Item on the opposite side, if they both fit in a bin.
Two Non-half Medium Items can rematch with a Quarter Item set and 8

Large Items. The two Medium Items are placed in a bin with the two Quarter
Item type 2 large bins. The Quarter Item type 1 bin is placed in its own bin. The
4 Quarter Item type 2 small bins are placed in bins with Large Items, and the
remaining 4 Large Items are placed in their own bin. This process will require 20
bins, and lead to an average fullness of at least (0.34375·2+0.25·11+0.54·8)/11 >
0.7 over the bins. This process requires the Large Items to not fit in a bin with the
relevant Medium Items remaining (otherwise this rematching would not happen
in the algorithm’s execution).

C.4 Third Items

Third Items will only have one category.
Third Item sets can be rematched with 6 Large Items. Four left and right

Large Items will be placed in the same bins as right and left outer bins respec-
tively. The remaining 2 Large Items will be placed alone in a bin, as will the two
inner bins. This process will require 8 bins, and lead to an average fullness of at
least ((1/3) · 8 + .5 · 6)/8 > 0.7 over the bins. This process requires there to be
Large Items which fit in a bin with the relevant Third Items remaining.

Third Item sets can be rematched with 1 Quarter Item set and 14 Large
Items. Two left and right Quarter Item type 2 large bins will be placed in the
same bins as right and left outer bins respectively. The 4 type 2 small Quarter
Item bins will be placed in a bin with a Large Item. The Quarter Item type
1 bins will remain in their own bin, as will the inner bins. The remaining two
outer bins will be placed in their own bin. The remaining 10 Large Items will be
placed alone in a bin. This process will require 20 bins, and lead to an average
fullness of at least ((1/3) · 8 + 0.25 · 11 + (2/3) · 14)/20 > 0.7 over the bins.
This process requires the Large Items to not fit in a bin with the relevant Third
Items remaining (otherwise this rematching would not happen in the algorithm’s
execution).

Scheduling Appointments Online: The Power of Deferred Decision-Making 105

C.5 Small Items

Sup-Category 3 (0.3125, 1/3]. A Type 2 Large Bin for this category will
contain 1 item.
A Type 1 Bin for this category will contain 3 items.

A Complete Set of Matched Bins for this category will contain

– 2 Type 2 Large Bins Matched Pairwise
– 2 Type 1 Bins Unmatched

Filling 3 bins for an average fullness of at least (0.3125 · 8)/3 ≥ 0.6875.
A Complete Set of Rematched Bins can be obtained by rematching with

4 Large Items under size 2/3 in 6 bins, for an average fullness of at least
(0.5 · 4 + 0.3125 · 8)/6 ≥ 0.7
6 Large Items over size 2/3 in 9 bins, for an average fullness of at least
(23 · 6 + 0.3125 · 8)/9 ≥ 0.7
2 Third Item sets (16 Third Items) in 11 bins, for an average fullness of at least
(13 · 16 + 0.3125 · 8)/11 ≥ 0.6875.

This category will rematch with 0 Quarter Items sets and satisfy the quarter
size reallocation property.

Category 3 (0.27, 0.3125]. A Type 2 Small Bin for this category will
contain 1 item.
A Type 1 Bin for this category will contain 3 items.

A Complete Set of Matched Bins for this category will contain

– 4 Type 2 Small Bins Matched Pairwise
– 3 Type 1 Bins Unmatched

Filling 5 bins for an average fullness of at least (0.27 · 13)/5 ≥ 0.6875.
A Complete Set of Rematched Bins can be obtained by rematching with

6 Large Items in 9 bins, for an average fullness of at least (0.5·6+0.27·13)/9 ≥ 0.7
2 Third Item sets (16 Third Items) in 11 bins, for an average fullness of at least
(13 · 16 + 0.27 · 13)/11 ≥ 0.6875.

This category will rematch with 0 Quarter Items sets and satisfy the quarter
size reallocation property.

Quarter Items (0.25, 0.27]. A Type 2 Small Bin for this category will
contain 1 item.
A Type 2 Large Bin for this category will contain 2 items.
A Type 1 Bin for this category will contain 3 items.

A Complete Set of Matched Bins for this category will contain

– 2 Type 2 Small Bins Matched Pairwise
– 2 Type 2 Small Bins Matched with 2 Type 2 Large Bins Pairwise
– 1 Type 1 Bin Unmatched

106 D. Smedira and D. Shmoys

Filling 4 bins for an average fullness of at least (0.25 · 11)/4 = 0.6875.
This category rematches in a unique way with almost every other item type,

explained where relevant. When matched directly with Large Items, Quarter
Item and Large Item bins are grouped together, with no items being rematched
into new bins.

Sup-Category 4 (0.23, 0.25]. A Type 2 Small Bin for this category will
contain 1 item.
A Type 1 Bin for this category will contain 4 items.

A Complete Set of Matched Bins for this category will contain

– 4 Type 2 Small Bins Matched Pairwise
– 2 Type 1 Bins Unmatched

Filling 4 bins for an average fullness of at least (0.23 · 12)/4 ≥ 0.6875.
A Complete Set of Rematched Bins can be obtained by rematching with

4 Large Items in 6 bins, for an average fullness of at least (0.5·4+0.23·12)/6 ≥ 0.7
2 Third Item sets (16 Third Items) in 10 bins, for an average fullness of at least
(13 · 16 + 0.23 · 12)/10 ≥ 0.6875
10 Large Items & 1 Quarter Item set in 15 bins, for an average fullness of at
least (0.5 · 10 + 0.25 · 11 + 0.23 · 12)/15 ≥ 0.7

and satisfying (0.3125 · 11 + 0.6875 · 10)/15 ≥ 0.6875
3 Third Item sets (24 Third Items) & 1 Quarter Item set in 17 bins, for an
average fullness of at least

(13 ·24+0.25 ·11+0.23 ·12)/17 ≥ 0.6875 and satisfying (0.3125 ·11+0.34375 ·
24)/17 ≥ 0.6875.

Category 4 (0.215, 0.23]. A Type 2 Small Bin for this category will contain
1 item.
A Type 2 Large Bin for this category will contain 2 items.

A Complete Set of Matched Bins for this category will contain

– 2 Type 2 Small Bins Matched Pairwise
– 4 Type 2 Large Bins Matched Pairwise

Filling 3 bins for an average fullness of at least (0.215 · 10)/3 ≥ 0.6875.
A Complete Set of Rematched Bins can be obtained by rematching with

6 Large Items under size 0.54 in 6 bins, for an average fullness of at least (0.5 ·
6 + 0.215 · 10)/6 ≥ 0.7
4 Large Items over size 0.54 in 6 bins, for an average fullness of at least (0.54 ·
4 + 0.215 · 10)/6 ≥ 0.7
2 Third Item sets (16 Third Items) in 10 bins, for an average fullness of at least
(13 · 16 + 0.215 · 10)/10 ≥ 0.6875
8 Large Items & 1 Quarter Item set in 12 bins, for an average fullness of at least
(0.5 · 8 + 0.25 · 11 + 0.215 · 10)/12 ≥ 0.7

and satisfying (0.3125 · 11 + 0.6875 · 8)/12 ≥ 0.6875

Scheduling Appointments Online: The Power of Deferred Decision-Making 107

3 Third Item sets (24 Third Items) & 1 Quarter Item set in 16 bins, for an
average fullness of at least

(13 · 24 + 0.25 · 11 + 0.215 · 10)/16 ≥ 0.6875 and satisfying (0.3125 · 11 +
0.34375 · 24)/16 ≥ 0.6875.

Sub-category 4 (0.206, 0.215]. A Type 2 Small Bin for this category will
contain 1 item.
A Type 2 Large Bin for this category will contain 2 items.

A Complete Set of Matched Bins for this category will contain

– 2 Type 2 Small Bins Matched Pairwise
– 6 Type 2 Large Bins Matched Pairwise

Filling 4 bins for an average fullness of at least (0.206 · 14)/4 ≥ 0.6875.
A Complete Set of Rematched Bins can be obtained by rematching with

8 Large Items under size 0.57 in 8 bins, for an average fullness of at least (0.5 ·
8 + 0.206 · 14)/8 ≥ 0.7
6 Large Items over size 0.57 in 9 bins, for an average fullness of at least (0.57 ·
6 + 0.206 · 14)/9 ≥ 0.7
2 Third Item sets (16 Third Items) in 11 bins, for an average fullness of at least
(13 · 16 + 0.206 · 14)/11 ≥ 0.6875
14 Large Items & 2 Quarter Item sets in 21 bins, for an average fullness of at
least (0.5 · 14 + 0.25 · 22 + 0.206 · 14)/21 ≥ 0.7

and satisfying (0.3125 · 22 + 0.6875 · 14)/21 ≥ 0.6875
3 Third Item sets (24 Third Items) & 1 Quarter Item set in 17 bins, for an
average fullness of at least

(13 · 24 + 0.25 · 11 + 0.206 · 14)/17 ≥ 0.6875 and satisfying (0.3125 · 11 +
0.34375 · 24)/17 ≥ 0.6875.

Sub-Sub-Category 4 (0.2, 0.206]. A Type 2 Small Bin for this category
will contain 1 item.
A Type 2 Large Bin for this category will contain 2 items.

A Complete Set of Matched Bins for this category will contain

– 2 Type 2 Small Bins Matched Pairwise
– 6 Type 2 Large Bins Matched Pairwise

Filling 4 bins for an average fullness of at least (0.2 · 14)/4 ≥ 0.6875.
A Complete Set of Rematched Bins can be obtained by rematching

with
8 Large Items under size 0.588 in 8 bins, for an average fullness of at least
(0.5 · 8 + 0.2 · 14)/8 ≥ 0.7
6 Large Items over size 0.588 in 9 bins, for an average fullness of at least (0.588 ·
6 + 0.2 · 14)/9 ≥ 0.7
2 Third Item sets (16 Third Items) in 11 bins, for an average fullness of at least
(13 · 16 + 0.2 · 14)/11 ≥ 0.6875

108 D. Smedira and D. Shmoys

14 Large Items & 2 Quarter Item sets in 21 bins, for an average fullness of at
least (0.5 · 14 + 0.25 · 22 + 0.2 · 14)/21 ≥ 0.7

and satisfying (0.3125 · 22 + 0.6875 · 14)/21 ≥ 0.6875
3 Third Item sets (24 Third Items) & 1 Quarter Item set in 17 bins, for an
average fullness of at least

(13 ·24+0.25 ·11+0.2 ·14)/17 ≥ 0.6875 and satisfying (0.3125 ·11+0.34375 ·
24)/17 ≥ 0.6875.

Sup-Category 5 (0.1825, 0.2]. A Type 2 Small Bin for this category will
contain 1 item.
A Type 2 Large Bin for this category will contain 2 items.
A Type 1 Bin for this category will contain 5 items.

A Complete Set of Matched Bins for this category will contain

– 2 Type 2 Small Bins Matched Pairwise
– 4 Type 2 Large Bins Matched Pairwise
– 2 Type 1 Bins Unmatched

Filling 5 bins for an average fullness of at least (0.1825 · 20)/5 ≥ 0.6875.
A Complete Set of Rematched Bins can be obtained by rematching with

6 Large Items under size 0.6 in 8 bins, for an average fullness of at least (0.5 ·
6 + 0.1825 · 20)/8 ≥ 0.7
8 Large Items over size 0.6 in 12 bins, for an average fullness of at least (0.6 ·
8 + 0.1825 · 20)/12 ≥ 0.7
3 Third Item sets (24 Third Items) in 16 bins, for an average fullness of at least
(13 · 24 + 0.1825 · 20)/16 ≥ 0.6875
16 Large Items & 2 Quarter Item sets in 24 bins, for an average fullness of at
least (0.5 · 16 + 0.25 · 22 + 0.1825 · 20)/24 ≥ 0.7

and satisfying (0.3125 · 22 + 0.6875 · 16)/24 ≥ 0.6875
5 Third Item sets (40 Third Items) & 2 Quarter Item sets in 28 bins, for an
average fullness of at least

(13 · 40 + 0.25 · 22 + 0.1825 · 20)/28 ≥ 0.6875 and satisfying (0.3125 · 22 +
0.34375 · 40)/28 ≥ 0.6875.

Category 5 (0.179, 0.1825]. A Type 2 Small Bin for this category will
contain 1 item.
A Type 2 Large Bin for this category will contain 2 items.
A Type 1 Bin for this category will contain 5 items.

A Complete Set of Matched Bins for this category will contain

– 4 Type 2 Small Bins Matched Pairwise
– 10 Type 2 Large Bins Matched Pairwise
– 6 Type 1 Bins Unmatched

Filling 13 bins for an average fullness of at least (0.179 · 54)/13 ≥ 0.6875.

Scheduling Appointments Online: The Power of Deferred Decision-Making 109

A Complete Set of Rematched Bins can be obtained by rematching with
14 Large Items under size 0.635 in 20 bins, for an average fullness of at least
(0.5 · 14 + 0.179 · 54)/20 ≥ 0.7
22 Large Items over size 0.635 in 33 bins, for an average fullness of at least
(0.635 · 22 + 0.179 · 54)/33 ≥ 0.7
7 Third Item sets (56 Third Items) in 39 bins, for an average fullness of at least
(13 · 56 + 0.179 · 54)/39 ≥ 0.6875
42 Large Items & 5 Quarter Item sets in 63 bins, for an average fullness of at
least (0.5 · 42 + 0.25 · 55 + 0.179 · 54)/63 ≥ 0.7

and satisfying (0.3125 · 55 + 0.6875 · 42)/63 ≥ 0.6875
12 Third Item sets (96 Third Items) & 5 Quarter Item sets in 69 bins, for an
average fullness of at least

(13 · 96 + 0.25 · 55 + 0.179 · 54)/69 ≥ 0.6875 and satisfying (0.3125 · 55 +
0.34375 · 96)/69 ≥ 0.6875.

Sub-category 5 (1/6, 0.179]. A Type 2 Small Bin for this category will
contain 1 item.
A Type 2 Large Bin for this category will contain 2 items.
A Type 1 Bin for this category will contain 5 items.

A Complete Set of Matched Bins for this category will contain

– 4 Type 2 Small Bins Matched Pairwise
– 10 Type 2 Large Bins Matched Pairwise
– 6 Type 1 Bins Unmatched

Filling 13 bins for an average fullness of at least ((1/6) · 54)/13 ≥ 0.6875.
A Complete Set of Rematched Bins can be obtained by rematching with

14 Large Items under size 0.642 in 20 bins, for an average fullness of at least
(0.5 · 14 + (1/6) · 54)/20 ≥ 0.7
22 Large Items over size 0.642 in 33 bins, for an average fullness of at least
(0.642 · 22 + (1/6) · 54)/33 ≥ 0.7
7 Third Item sets (56 Third Items) in 39 bins, for an average fullness of at least
(13 · 56 + (1/6) · 54)/39 ≥ 0.6875
36 Large Items under size 0.642 & 4 Quarter Item sets in 54 bins, for an average
fullness of at least

(0.5 ·36+0.25 ·44+(1/6) ·54)/54 ≥ 0.7 and satisfying (0.3125 ·44+0.6875 ·
36)/54 ≥ 0.6875
42 Large Items over size 0.642 & 5 Quarter Item sets in 63 bins, for an average
fullness of at least

(0.642 · 42 + 0.25 · 55 + (1/6) · 54)/63 ≥ 0.7 and satisfying (0.3125 · 55 +
0.6875 · 42)/63 ≥ 0.6875
12 Third Item sets (96 Third Items) & 5 Quarter Item sets in 69 bins, for an
average fullness of at least

(13 · 96 + 0.25 · 55 + (1/6) · 54)/69 ≥ 0.6875 and satisfying (0.3125 · 55 +
0.34375 · 96)/69 ≥ 0.6875.

110 D. Smedira and D. Shmoys

Sup-Category 6 (0.15625, 1/6]. A Type 2 Small Bin for this category will
contain 1 item.
A Type 2 Large Bin for this category will contain 2 items.
A Type 1 Bin for this category will contain 6 items.

A Complete Set of Matched Bins for this category will contain

– 2 Type 2 Small Bins Matched Pairwise
– 2 Type 2 Large Bins Matched Pairwise
– 2 Type 1 Bins Unmatched

Filling 4 bins for an average fullness of at least (0.15625 · 18)/4 ≥ 0.6875.
A Complete Set of Rematched Bins can be obtained by rematching with

4 Large Items under size 2/3 in 6 bins, for an average fullness of at least (0.5 ·
4 + 0.15625 · 18)/6 ≥ 0.7
6 Large Items over size 2/3 in 9 bins, for an average fullness of at least ((2/3) ·
6 + 0.15625 · 18)/9 ≥ 0.7
2 Third Item sets (16 Third Items) in 11 bins, for an average fullness of at least
(13 · 16 + 0.15625 · 18)/11 ≥ 0.6875
10 Large Items & 1 Quarter Item set in 15 bins, for an average fullness of at
least (0.5 · 10 + 0.25 · 11 + 0.15625 · 18)/15 ≥ 0.7

and satisfying (0.3125 · 11 + 0.6875 · 10)/15 ≥ 0.6875
3 Third Item sets (24 Third Items) & 1 Quarter Item set in 17 bins, for an
average fullness of at least

(13 · 24 + 0.25 · 11 + 0.15625 · 18)/17 ≥ 0.6875 and satisfying (0.3125 · 11 +
0.34375 · 24)/17 ≥ 0.6875.

Category 6 (1/7, 0.15625]. A Type 2 Small Bin for this category will
contain 2 items.
A Type 1 Bin for this category will contain 6 items.

A Complete Set of Matched Bins for this category will contain

– 4 Type 2 Small Bins Matched Pairwise
– 2 Type 1 Bins Unmatched

Filling 4 bins for an average fullness of at least ((1/7) · 20)/4 ≥ 0.6875.
A Complete Set of Rematched Bins can be obtained by rematching with

4 Large Items in 6 bins, for an average fullness of at least (0.5 ·4+(1/7) ·20)/6 ≥
0.7
2 Third Item sets (16 Third Items) in 10 bins, for an average fullness of at least
(13 · 16 + (1/7) · 20)/10 ≥ 0.6875
10 Large Items & 1 Quarter Item set in 15 bins, for an average fullness of at
least (0.5 · 10 + 0.25 · 11 + (1/7) · 20)/15 ≥ 0.7

and satisfying (0.3125 · 11 + 0.6875 · 10)/15 ≥ 0.6875
3 Third Item sets (24 Third Items) & 1 Quarter Item set in 17 bins, for an
average fullness of at least

(13 · 24 + 0.25 · 11 + (1/7) · 20)/17 ≥ 0.6875 and satisfying (0.3125 · 11 +
0.34375 · 24)/17 ≥ 0.6875.

Scheduling Appointments Online: The Power of Deferred Decision-Making 111

Category 7 (1/8, 1/7]. A Type 2 Small Bin for this category will contain
2 item.
A Type 2 Large Bin for this category will contain 3 items.
A Type 1 Bin for this category will contain 7 items.

A Complete Set of Matched Bins for this category will contain

– 4 Type 2 Small Bins Matched Pairwise
– 2 Type 2 Large Bins Matched Pairwise
– 2 Type 1 Bins Unmatched

Filling 5 bins for an average fullness of at least ((1/8) · 28)/5 ≥ 0.6875.
A Complete Set of Rematched Bins can be obtained by rematching with

6 Large Items in 9 bins, for an average fullness of at least (0.5 ·6+(1/8) ·28)/9 ≥
0.7
2 Third Item sets (16 Third Items) in 11 bins, for an average fullness of at least
(13 · 16 + (1/8) · 28)/11 ≥ 0.6875
10 Large Items & 1 Quarter Item set in 15 bins, for an average fullness of at
least (0.5 · 10 + 0.25 · 11 + (1/8) · 28)/15 ≥ 0.7

and satisfying (0.3125 · 11 + 0.6875 · 10)/15 ≥ 0.6875
4 Third Item sets (32 Third Items) & 1 Quarter Item set in 21 bins, for an
average fullness of at least

(13 · 32 + 0.25 · 11 + (1/8) · 28)/21 ≥ 0.6875 and satisfying (0.3125 · 11 +
0.34375 · 32)/21 ≥ 0.6875.

Category 8 (1/9, 1/8]. A Type 2 Small Bin for this category will contain
2 item.
A Type 2 Large Bin for this category will contain 3 items.
A Type 1 Bin for this category will contain 8 items.

A Complete Set of Matched Bins for this category will contain

– 2 Type 2 Small Bins Matched Pairwise
– 2 Type 2 Large Bins Matched Pairwise
– 2 Type 1 Bins Unmatched

Filling 4 bins for an average fullness of at least ((1/9) · 26)/4 ≥ 0.6875.
A Complete Set of Rematched Bins can be obtained by rematching with

4 Large Items under size 5/8 in 6 bins, for an average fullness of at least (0.5 ·
4 + (1/9) · 26)/6 ≥ 0.7
6 Large Items over size 5/8 in 9 bins, for an average fullness of at least ((5/8) ·
6 + (1/9) · 26)/9 ≥ 0.7
2 Third Item sets (16 Third Items) in 11 bins, for an average fullness of at least
(13 · 16 + (1/9) · 26)/11 ≥ 0.6875
10 Large Items & 1 Quarter Item set in 15 bins, for an average fullness of at
least (0.5 · 10 + 0.25 · 11 + (1/9) · 26)/15 ≥ 0.7

and satisfying (0.3125 · 11 + 0.6875 · 10)/15 ≥ 0.6875
4 Third Item sets (32 Third Items) & 1 Quarter Item set in 21 bins, for an
average fullness of at least

112 D. Smedira and D. Shmoys

(13 · 32 + 0.25 · 11 + (1/9) · 26)/21 ≥ 0.6875 and satisfying (0.3125 · 11 +
0.34375 · 32)/21 ≥ 0.6875.

Category 9 (1/10, 1/9]. A Type 2 Small Bin for this category will contain
2 item.
A Type 2 Large Bin for this category will contain 3 items.
A Type 1 Bin for this category will contain 9 items.

A Complete Set of Matched Bins for this category will contain

– 2 Type 2 Small Bins Matched Pairwise
– 2 Type 2 Large Bins Matched Pairwise
– 2 Type 1 Bins Unmatched

Filling 4 bins for an average fullness of at least ((1/10) · 28)/4 ≥ 0.6875.
A Complete Set of Rematched Bins can be obtained by rematching with

4 Large Items under size 2/3 in 6 bins, for an average fullness of at least (0.5 ·
4 + (1/10) · 28)/6 ≥ 0.7
6 Large Items over size 2/3 in 9 bins, for an average fullness of at least ((2/3) ·
6 + (1/10) · 28)/9 ≥ 0.7
2 Third Item sets (16 Third Items) in 11 bins, for an average fullness of at least
(13 · 16 + (1/10) · 28)/11 ≥ 0.6875
10 Large Items & 1 Quarter Item set in 15 bins, for an average fullness of at
least (0.5 · 10 + 0.25 · 11 + (1/10) · 28)/15 ≥ 0.7

and satisfying (0.3125 · 11 + 0.6875 · 10)/15 ≥ 0.6875
4 Third Item sets (32 Third Items) & 1 Quarter Item set in 21 bins, for an
average fullness of at least

(13 · 32 + 0.25 · 11 + (1/10) · 28)/21 ≥ 0.6875 and satisfying (0.3125 · 11 +
0.34375 · 32)/21 ≥ 0.6875.

Category 10 (1/11, 1/10]. A Type 2 Small Bin for this category will
contain 3 item.
A Type 2 Large Bin for this category will contain 4 items.
A Type 1 Bin for this category will contain 10 items.

A Complete Set of Matched Bins for this category will contain

– 2 Type 2 Small Bins Matched Pairwise
– 2 Type 2 Large Bins Matched Pairwise
– 2 Type 1 Bins Unmatched

Filling 4 bins for an average fullness of at least ((1/11) · 34)/4 ≥ 0.6875.
A Complete Set of Rematched Bins can be obtained by rematching with

4 Large Items under size 0.6 in 6 bins, for an average fullness of at least (0.5 ·
4 + (1/11) · 34)/6 ≥ 0.7
6 Large Items over size 0.6 in 9 bins, for an average fullness of at least (0.6 · 6 +
(1/11) · 34)/9 ≥ 0.7
2 Third Item sets (16 Third Items) in 11 bins, for an average fullness of at least
(13 · 16 + (1/11) · 34)/11 ≥ 0.6875

Scheduling Appointments Online: The Power of Deferred Decision-Making 113

10 Large Items & 1 Quarter Item set in 15 bins, for an average fullness of at
least (0.5 · 10 + 0.25 · 11 + (1/11) · 34)/15 ≥ 0.7

and satisfying (0.3125 · 11 + 0.6875 · 10)/15 ≥ 0.6875
4 Third Item sets (32 Third Items) & 1 Quarter Item set in 21 bins, for an
average fullness of at least

(13 · 32 + 0.25 · 11 + (1/11) · 34)/21 ≥ 0.6875 and satisfying (0.3125 · 11 +
0.34375 · 32)/21 ≥ 0.6875.

Category 11 (1/12, 1/11]. A Type 2 Small Bin for this category will
contain 3 item.
A Type 2 Large Bin for this category will contain 5 items.
A Type 1 Bin for this category will contain 11 items.

A Complete Set of Matched Bins for this category will contain

– 2 Type 2 Small Bins Matched Pairwise
– 2 Type 2 Large Bins Matched Pairwise
– 2 Type 1 Bins Unmatched

Filling 4 bins for an average fullness of at least ((1/12) · 38)/4 ≥ 0.6875.
A Complete Set of Rematched Bins can be obtained by rematching

with
4 Large Items under size 6/11 in 6 bins, for an average fullness of at least
(0.5 · 4 + (1/12) · 38)/6 ≥ 0.7
6 Large Items over size 6/11 in 9 bins, for an average fullness of at least ((6/11) ·
6 + (1/12) · 38)/9 ≥ 0.7
2 Third Item sets (16 Third Items) in 11 bins, for an average fullness of at least
(13 · 16 + (1/12) · 38)/11 ≥ 0.6875
10 Large Items & 1 Quarter Item set in 15 bins, for an average fullness of at
least (0.5 · 10 + 0.25 · 11 + (1/12) · 38)/15 ≥ 0.7

and satisfying (0.3125 · 11 + 0.6875 · 10)/15 ≥ 0.6875
4 Third Item sets (32 Third Items) & 1 Quarter Item set in 21 bins, for an
average fullness of at least

(13 · 32 + 0.25 · 11 + (1/12) · 38)/21 ≥ 0.6875 and satisfying (0.3125 · 11 +
0.34375 · 32)/21 ≥ 0.6875.

Category 12 [0, 1/12]. This category will be slightly different, since it includes
all items of size at most 1/12. So each bin type will not specify a number of items,
but rather a cutoff a which point items will stop being added. For example, a
Type 1 bin will be until 11/12 full, which means that it will not be “full” and
able to accept more items until it is 11/12ths full, at which point it may not be
able to accept another item without going over the limit and is thus at capacity.

A Type 2 Small Bin for this category will be filled until 1/4 full.
A Type 2 Large Bin for this category will be filled until 113/300 full.
A Type 1 Bin for this category will be filled until 11/12 full.

A Complete Set of Matched Bins for this category will contain

114 D. Smedira and D. Shmoys

– 2 Type 2 Small Bins Matched Pairwise
– 2 Type 2 Large Bins Matched Pairwise
– 2 Type 1 Bins Unmatched

Filling 4 bins for an average fullness of at least (((1/4) + (113/300) + (11/12)) ·
2)/4 ≥ 0.6875.

A Complete Set of Rematched Bins can be obtained by rematching with
4 Large Items under size 0.54 in 6 bins, for an average fullness of at least (0.5 ·
4 + ((1/4) + (113/300) + (11/12)) · 2)/6 ≥ 0.7
6 Large Items over size 0.54 in 9 bins, for an average fullness of at least (0.54 ·
6 + ((1/4) + (113/300) + (11/12)) · 2)/9 ≥ 0.7
2 Third Item sets (16 Third Items) in 11 bins, for an average fullness of at least

(13 · 16 + ((1/4) + (113/300) + (11/12)) · 2)/11 ≥ 0.6875
10 Large Items & 1 Quarter Item set in 15 bins, for an average fullness of at
least

(0.5 ·10+0.25 ·11+((1/4)+(113/300)+(11/12)) ·2)/15 ≥ 0.7 and satisfying
(0.3125 · 11 + 0.6875 · 10)/15 ≥ 0.6875
4 Third Item sets (32 Third Items) & 1 Quarter Item set in 21 bins, for an
average fullness of at least

(13 · 32 + 0.25 · 11 + ((1/4) + (113/300) + (11/12)) · 2)/21 ≥ 0.6875 and
satisfying (0.3125 · 11 + 0.34375 · 32)/21 ≥ 0.6875.

References

1. Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: A new and improved algo-
rithm for online bin packing. arXiv preprint arXiv:1707.01728 (2017)

2. Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: A new lower bound for
classic online bin packing. Algorithmica 83, 1–16 (2021)

3. Balogh, J., Békési, J., Dósa, G., Sgall, J., van Stee, R.: The optimal absolute ratio
for online bin packing. J. Comput. Syst. Sci. 102, 1–17 (2019)

4. Balogh, J., Dósa, G., Epstein, L., Jeż, �L: Lower bounds on the performance of
online algorithms for relaxed packing problems. In: Bazgan, C., Fernau, H. (eds.)
IWOCA 2022. LNCS, vol. 13270, pp. 101–113. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-06678-8 8

5. Billingsley, P.: Probability and Measure. Wiley, Hoboken (2008)
6. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-

bridge University Press, Cambridge (2005)
7. Chandra, B.: Does randomization help in on-line bin packing? Inf. Process. Lett.

43(1), 15–19 (1992)
8. Coffman, E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin packing

approximation algorithms: survey and classification. In: Pardalos, P.M., Du, D.-
Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 455–531.
Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1 35

9. Csirik, J., Woeginger, G.J.: On-line packing and covering problems. Online Algo-
rithms 147–177 (1998)

10. Escribe, C., Hu, M., Levi, R.: Competitive algorithms for the online minimum peak
appointment scheduling. Available at SSRN 3787306 (2021)

http://arxiv.org/abs/1707.01728
https://doi.org/10.1007/978-3-031-06678-8_8
https://doi.org/10.1007/978-3-031-06678-8_8
https://doi.org/10.1007/978-1-4419-7997-1_35

Scheduling Appointments Online: The Power of Deferred Decision-Making 115

11. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Elsevier, Ams-
terdam (2004)

12. Johnson, D.S.: Fast algorithms for bin packing. J. Comput. Syst. Sci. 8(3), 272–314
(1974)

13. Lee, C.C., Lee, D.T.: A simple on-line bin-packing algorithm. J. ACM (JACM)
32(3), 562–572 (1985)

14. Levi, R.: Private communication (2021)

Canadian Traveller Problem
with Predictions

Evripidis Bampis1, Bruno Escoffier1,2, and Michalis Xefteris1(B)

1 Sorbonne Université, CNRS, LIP6, 75005 Paris, France
{evripidis.bampis,Bruno.Escoffier,michail.xefteris}@lip6.fr

2 Institut Universitaire de France, Paris, France

Abstract. In this work, we consider the k-Canadian Traveller Problem
(k-CTP) under the learning-augmented framework proposed by Lykouris
& Vassilvitskii [23]. k-CTP is a generalization of the shortest path prob-
lem, and involves a traveller who knows the entire graph in advance and
wishes to find the shortest route from a source vertex s to a destination
vertex t, but discovers online that some edges (up to k) are blocked once
reaching them. A potentially imperfect predictor gives us the number
and the locations of the blocked edges.

We present a deterministic and a randomized online algorithm for the
learning-augmented k-CTP that achieve a tradeoff between consistency
(quality of the solution when the prediction is correct) and robustness
(quality of the solution when there are errors in the prediction). More-
over, we prove a matching lower bound for the deterministic case estab-
lishing that the tradeoff between consistency and robustness is optimal,
and show a lower bound for the randomized algorithm. Finally, we prove
several deterministic and randomized lower bounds on the competitive
ratio of k-CTP depending on the prediction error, and complement them,
in most cases, with matching upper bounds.

Keywords: Canadian Traveller Problem · Online algorithm · Learning
augmented algorithm

1 Introduction

Motivated by various applications including online route planning in road net-
works, or message routing in communication networks, the Canadian Traveller
problem (CTP), introduced in 1991 by Papadimitriou and Yannakakis [29], is a
generalization of one of the most prominent problems in Computer Science, the
Shortest Path Problem [20,28]. In CTP the underlying graph is given in advance,
but it is unreliable, i.e. some edges may become unavailable (e.g. because of
snowfall, or link failure) in an online manner. The blockage of an edge becomes
known to the algorithm only when it arrives at one of its extremities. The objec-
tive is to devise an efficient adaptive strategy minimizing the ratio between
the length of the path found and the optimum (where the blocked edges are
removed). Papadimitriou and Yannakakis [29] proved that the problem of devis-
ing an algorithm that guarantees a given competitive ratio is PSPACE-complete
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Chalermsook and B. Laekhanukit (Eds.): WAOA 2022, LNCS 13538, pp. 116–133, 2022.
https://doi.org/10.1007/978-3-031-18367-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18367-6_6&domain=pdf
https://doi.org/10.1007/978-3-031-18367-6_6

Canadian Traveller Problem with Predictions 117

if the number of blocked edges is not fixed. Given the intractability of CTP, Bar-
Noy and Schieber [7] focused on k-CTP, a special case of CTP where the number
of blocked edges is bounded by k. Here, we consider k-CTP in the framework
of learning-augmented online algorithms [23,26]. It is natural to consider that in
applications, like route planning, or message routing in communication networks,
predictions may be provided on the input data. Our aim is to study the impact
of the quality of such predictions on the performance of online algorithms for
k-CTP.

Formally, in k-CTP we consider a connected undirected graph G = (V,E)
with a source node s, a destination node t and a non-negative cost function
c : E → R

+ representing the cost to traverse each edge. An agent seeks to find
a shortest path from s to t. However, one or more edges (up to k) might be
blocked, and thus cannot be traversed. An agent only learns that an edge is
blocked when reaching one of its endpoints.

In classical competitive analysis, a deterministic online algorithm ALG for
k-CTP is c-competitive if the total length ALG(σ) traversed by ALG for input
σ is at most c ·OPT (σ), where OPT (σ) is the length of a shortest s−t path in G
without the blocked edges [33]. A randomized algorithm is c-competitive against
an oblivious adversary if the expected cost E[ALG(σ)] is at most c·OPT (σ) [10].

Bar-Noy and Schieber [7] considered k-CTP and they proposed a polynomial
time algorithm that minimizes the maximum travel length. Westphal in [38] gave
a simple online deterministic algorithm for k-CTP which is (2k+1)-competitive.
He also proved that no deterministic online algorithm with a better competitive
ratio exists. Furthermore, he showed a lower bound for any randomized algo-
rithm of k + 1, even if all s − t paths are node disjoint. Xu et al. [39] proposed a
deterministic algorithm that is also (2k + 1)-competitive for k-CTP. They also
proved that a natural greedy strategy based on the available blockage informa-
tion is exponential in k. A (k + 1)-competitive randomized online algorithm for
k-CTP is known on graphs where all s−t paths are node-disjoint [8,32]. Demaine
et al. [12] proposed a polynomial time randomized algorithm that improves the
deterministic lower bound of 2k +1 by an o(1) factor for arbitrary graphs. They
also showed that the competitive ratio is even better if the randomized algorithm
runs in pseudo-polynomial time. More recently, Bergé et al. [9] proved that the
competitive ratio of any randomized memoryless strategy (agent’s strategy does
not depend on his/her anterior moves) cannot be better than 2k+O (1). Several
other variants of the problem have been studied in the recent years [16], [27].

Given the widespread of Machine Learning technology, in the last years, pre-
dictions from ML are used in order to improve the worst case analysis of online
algorithms [11,13,24,34]. The formal framework for these learning-augmented
algorithms has been presented by Lykouris and Vassilvitskii in their seminal
paper [23], where they studied the caching problem. In this framework, no
assumption is made concerning the quality of the predictor and the challenge
is to design a learning-augmented online algorithm that finds a good tradeoff
between the two extreme alternatives, i.e. following blindly the predictions, or
simply ignore them. Ideally, the objective is to produce algorithms using pre-
dictions that are consistent, i.e. whose performance is close to the best offline

118 E. Bampis et al.

algorithm when the prediction is accurate, and robust, i.e. whose performance is
close to the online algorithm without predictions when the prediction is bad.

Antoniadis et al. [1], Rohatgi [31] and Wei [36] subsequently gave simpler
and improved algorithms for the caching problem. Kumar et al. in [30] applied
the learning-augmented setting to ski rental and online scheduling. For the
same problems, Wei and Zhang, [37], provided a set of non-trivial lower bounds
for competitive analysis of learning-augmented online algorithms. Many other
papers have been published in this direction for ski rental [5,6,15,35], schedul-
ing [3,4,17,18,25], the online k-server problem [21], k-means clustering [14] and
others [2,19,22].

1.1 Our Contribution

In this work, we study the k-Canadian Traveller Problem through the lens of
online algorithms with predictions. We present both deterministic and random-
ized upper and lower bounds for the problem. Following previous works we focus
on path-disjoint graphs for the randomized case1. We use a simple model where
we are given predictions on the locations of the blocked edges. For example, con-
sider a situation wherein you need to follow the shortest route to a destination.
You usually open the Maps app on your phone to find you the best route. Maps
app does that using predictions about the weather condition, the traffic jam
etc. These predictions capture additional side information about the route we
should follow. In our model, the error of the prediction is just the total number
of false predictions we get. The parameter k upper bounds the number of real
blocked edges (denoted by κ, usually unknown when the algorithm starts) and
the number of predicted blocked edges (denoted by kp) in the graph, meaning
that we want to design algorithms that hedge against all situations where up to
k edges can be blocked (and up to k predicted to be blocked).

In Sect. 3, we give the main results of this paper which are algorithms with
predictions for k-CTP (deterministic and randomized ones) that are as consis-
tent and robust as possible. More precisely, we say that an algorithm is (a, b]-
competitive ([a, b]-competitive), when it achieves a competitive ratio smaller
than (no more than) a when the prediction is correct and no more than b other-
wise. Our aim is to answer the following question: if we want an algorithm which
is (1 + ε)-competitive if the prediction is correct (consistency 1 + ε), what is the
best competitive ratio we can get when the prediction is not correct (robust-
ness)? The parameter ε > 0 is user defined, possibly adjusted depending on
her/his level of trust in the predictions. The results are presented in Table 1. We
give a deterministic

(
1+ε, 2k−1+ 4k

ε

]
-lower bound and a matching upper bound.

For the randomized case, we give a randomized
[
1 + ε, k + k

ε

]
-lower bound and

an algorithm that achieves a tradeoff of
[
1 + ε, k + 4k

ε

]
on path-disjoint graphs,

when k is considered as known. We note that the above lower bounds are also
valid when the parameter is κ (the real number of blocked edges). In most real

1 As mentioned in earlier, while a (2k + 1)-competitive (matching the lower bound)
deterministic algorithm is known for general graph, a (k+1)-competitive randomized
algorithm (matching the lower bound) is only known for path-disjoint graphs.

Canadian Traveller Problem with Predictions 119

world problems such as the ones described earlier, the number of blocked edges
is usually small and we can get interesting tradeoffs between consistency and
robustness.

Table 1. Our bounds on the tradeoffs between consistency and robustness for our
learning-augmented model (0 < ε ≤ 2k for the deterministic case, and 0 < ε ≤ k for
the randomized one).

Deterministic
algorithms

Lower bound
(
1 + ε, 2k − 1 + 4k

ε

]

Theorem 1

Upper bound
(
1 + ε, 2k − 1 + 4k

ε

]

Theorem 2

Randomized
algorithms

Lower bound
[
1 + ε, k + k

ε

]

Theorem 3

Upper bound
[
1 + ε, k + 4k

ε

]

Theorem 4

In Sect. 4, we explore the competitive ratios of k-CTP that can be achieved
depending on the error of the predictor. Besides consistency and robustness,
most works in this area classically study smooth error dependencies for the
competitive ratio [5,31]. In this paper this is not the case, since the error is highly
non-continuous. Our analysis contains both deterministic and randomized lower
bounds complemented with matching upper bounds in almost all cases. These
results are presented in Table 2 and justify the model of consistency-robustness
tradeoff we chose in the previous section. All lower bounds are also valid if the
parameter is κ. Note that for all upper bounds (except for c∗ = 2k + 1) the
parameter k is considered to be known in advance. For the randomized case, the
upper bound is given for path-disjoint graphs.

2 Preliminaries

We introduce two algorithms of the literature that are useful for our work and
some notation we use in the rest of the technical sections.

2.1 Deterministic and Randomized Algorithms

As mentioned in the introduction, Westphal in [38] gave an optimal deterministic
algorithm Backtrack for k-CTP, which is (2k + 1)-competitive (note that the
algorithm does not need to know k).

Backtrack: An agent begins at source s and follows the cheapest s − t path
on the graph. When the agent learns about a blocked edge on the path to t,
he/she returns to s and takes the cheapest s − t path without the blocked edge
discovered. The agent repeats this strategy until he/she arrives at t. Observe
that he/she backtracks at most k times, since there are no more than k edges
blocked, and thus Backtrack is (2k + 1)-competitive.

120 E. Bampis et al.

Table 2. Our bounds on the competitive ratio c∗ with respect to error, k. The upper
bounds 2k + 1 and k + 1 are also valid for error ≤ t, for any t ≥ 2.

k = 1 k = 2 k ≥ 3

Deterministic
algorithms

error ≤ 1 c∗ = 3
Theorem 10

c∗ = 3+
√
17

2
� 3.56

Theorems 11 and 12
c∗ = 2k − 1
Theorems 8 and 9

error ≤ 2 c∗ = 2k + 1
Theorem 7

Randomized
algorithms

error ≤ 1 c∗ ≥ k
Theorem 14

error ≤ 2 c∗ = k + 1
Theorem 13

Fig. 1. The graph G∗ for the proof of lower bounds.

Concerning randomized algorithm, the proof of the lower bound of (k+1) [38],
holding even if all s − t paths are node-disjoint (besides s and t), uses the graph
in Fig. 1 with c1 = c2 = · · · = ck+1 (note that the lower bound holds when
restricting to positive length by replacing 0 with ε > 0). The matching upper
bound of (k + 1) [8,32], which is known to hold only when the paths are node-
disjoint, is based on a randomized algorithm that we will call RandBacktrack
in the sequel. The very general idea of this algorithm, which can be seen as a
randomized version of Backtrack, is the following.

RandBacktrack: Consider the k + 1 shortest s − t paths in the graph.
The algorithm defines an appropriate probability distribution and then chooses
a path according to this distribution that the agent tries to traverse. If this path
is feasible, the algorithm terminates. If it is blocked, the agent returns to s and
repeats the procedure for a smaller set of paths.

Canadian Traveller Problem with Predictions 121

2.2 Notations

For every edge e ∈ E, we get a prediction on whether e is blocked or not. We
define the error of the predictions as the total number of false predictions we
have compared to the real instance. Formally every edge has prediction error
er(e) ∈ {0, 1}.

The total prediction error is given by:

error =
∑

e∈E

er(e)

For proving lower bounds, we will refer several times to the graph G∗, which
means the graph in Fig. 1. When we say that Pi is blocked, we mean that the
edge with cost 0 of Pi is blocked. We omit these details in the proofs for ease of
explanation. Moreover, when we refer to a path we always mean an s − t path
in the rest of the paper. Note that the lower bounds we get occur with strictly
positive values on the edges, simply by replacing 0 with ε > 0 in G∗.

We denote by OPT the optimal offline cost of the k-CTP instance, ALG the
value of an algorithm under study, and by r the competitive ratio of an online
algorithm to avoid any confusion with the cost c of an edge on the graph. More
specifically, r = ALG

OPT in the deterministic case and r = E[ALG]
OPT in the randomized

one.

3 Tradeoffs Between Consistency and Robustness

In this section, we study the tradeoffs between consistency and robustness. As
explained before, we express tradeoffs by answering the following question: if
we want our algorithm to be (1 + ε)-competitive if the prediction is correct
(consistency 1 + ε), what is the best competitive ratio we can get when the
prediction is not correct (robustness)?

We deal with the deterministic case in Sect. 3.1 and the randomized one in
Sect. 3.2.

3.1 Tradeoffs for Deterministic Algorithms

Theorem 1. Any deterministic algorithm that achieves competitive ratio
smaller than 1 + ε when the prediction is correct, achieves a ratio of at least
2k − 1 + 4k

ε when the prediction is not correct, even when the error is at most 2
and the graph is path-disjoint.

Proof. Consider a graph G∗ with k + 1 paths P1, P2, ..., Pk, Pk+1, which are
node-disjoint. The paths P1, P2, ..., Pk−1, Pk have costs equal to 1 (c1 = c2 =
... = ck = 1) and path Pk+1 has cost ck+1 = 2k

ε . P1, P2,...,Pk are predicted to
be blocked (k predicted blocked edges) and Pk+1 is feasible.

If there is no error, the predicted instance is also the real one, Pk+1 is optimal.
To get a competitive ratio smaller than 1+ε (consistency bound), a deterministic

122 E. Bampis et al.

online algorithm cannot follow all paths P1, P2, . . . , Pk before exploring Pk+1

as the ratio would be r = 2c1
ck+1

+ ...+ 2ck
ck+1

+1 = 1+ ε. Therefore, Pk+1 is visited
before at least one path P1, P2, . . . , Pk.

When an adversary blocks Pk+1 and all the other paths visited by the algo-
rithm except for the last one (k blocks in total), it creates a new instance with
error = 2. The optimal cost is 1 and the algorithm now has competitive ratio:

r =
2(k − 1) + 2ck+1 + 1

1
= 2k − 1 +

4k

ε

Consequently, we have a Pareto lower bound (1 + ε, 2k − 1 + 4k
ε]. ��

We now give an algorithm that matches the previous lower bound.
E-Backtrack is formally described in Algorithm 1. It basically executes

Backtrack, but interrupts at some point its execution in order to explore
the shortest unblocked-predicted path. The interruption point (determined by
Eq. (1) in the description of the algorithm) is chosen sufficiently early to ensure
good consistency and not too early to ensure good robustness.

Algorithm 1: E-Backtrack

Input : An instance of CTP with prediction with parameter k, ε > 0
Output: An s − t path

1 Ppred, cpred ← shortest path and its cost after removing all predicted
blocked edges

2 Execute Backtrack and explore paths P1, . . . , Pj , of cost c1, . . . , cj until
one of the following cases occurs:

3 (a) t is reached
4 (b) the next path Pj+1 to explore is such that:

2c1 + 2c2 + ... + 2cj + 2cj+1 ≥ ε · cpred (1)

5 if (a) occurs then Return the found path;
6 else
7 Explore Ppred (if not yet known to be blocked)
8 if Ppred is not blocked then output it;
9 else Resume the execution of Backtrack;

10 end

Theorem 2. For 0 < ε ≤ 2k, E-Backtrack is a deterministic (1+ ε, 2k − 1+
4k
ε]-competitive algorithm.

Proof. We denote by ALG the cost of algorithm E-Backtrack.
Suppose first that case (a) occurs. Then j ≤ k + 1 as there are at most k

blocked edges, and 2c1 + · · · + 2cj < ε · cpred (otherwise case (b) would have

Canadian Traveller Problem with Predictions 123

occurred earlier). In the case where the prediction is correct, OPT = cpred and,
using ε ≤ 2k:

ALG ≤ 2c1 + · · · + 2cj−1 + cj < ε · cpred < (1 + ε)cpred

If the prediction is not correct, then OPT = cj and:

ALG ≤ 2c1 + · · · + 2cj−1 + cj ≤ (2k + 1)OPT ≤ (2k − 1 + 4k/ε)OPT

Suppose now that case (b) occurs. As explained earlier 2c1+· · ·+2cj < ε·cpred.
In the case where the prediction is correct, OPT = cpred and:

ALG ≤ 2c1 + · · · + 2cj−1 + 2cj + cpred < (1 + ε)cpred

In the case where the prediction is not correct, if Ppred were already known
to be blocked, then we directly get a ratio 2k + 1 ≤ 2k − 1 + 4k/ε. Otherwise,
let P1, . . . , Pj , Ppred, Pj+1, . . . , Pt be the paths explored by E-Backtrack. As
there are at most k blocked edges, t ≤ k (note that the exploration of Ppred does
give a previously unknown blocked edge). Moreover, c1 ≤ c2 ≤ · · · ≤ ct = OPT .
We get:

ALG = 2
t−1∑

i=1

ci + 2cpred + ct ≤ (2k − 1)OPT + 2cpred (2)

Using (1) we know that cpred ≤ 2
∑j+1

i=1 ci/ε ≤ 2
∑t

i=1 ci/ε ≤ 2kct/ε. Then
Eq. (2) gives:

ALG ≤
(

2k − 1 +
4k

ε

)
OPT

��

3.2 Randomized Bounds and Algorithms

We now consider the randomized case. As explained in the introduction, we
restrict ourselves to the path-disjoint graphs for randomized algorithms.

Theorem 3. Any randomized algorithm that achieves competitive ratio at most
1 + ε when the prediction is correct, achieves a ratio of at least k + k

ε when
the prediction is not correct, even when the error is at most 2 and the graph is
path-disjoint.

Proof. Consider a graph G∗ with k + 1 paths P1, P2, ..., Pk, Pk+1, which are
node-disjoint. The paths P1, P2, ..., Pk−1, Pk have costs equal to 1 (c1 = c2 =
... = ck = 1) and path Pk+1 has cost ck+1 = k

ε . P1, P2,...,Pk are predicted to be
blocked (k predicted blocked edges) and Pk+1 is feasible.

If there is no error, the predicted instance is also the real one, Pk+1 is optimal
(OPT = ck+1 = k

ε) and the competitive ratio must be at most 1 + ε. In the
above instance, any deterministic algorithm can achieve one of the following
competitive ratios:

124 E. Bampis et al.

– r = 1, when choosing only Pk+1.
– r = 2ε

k + 1, when choosing paths Pi, Pk+1 with i �= k + 1.
– r = 4ε

k + 1, when choosing paths Pi, Pj , Pk+1 with i, j �= k + 1 and i �= j.
– . . .
– r = 2k·ε

k + 1, when choosing all k paths P1,..., Pk and then Pk+1.

A randomized algorithm can be viewed as a probability distribution over all
deterministic algorithms. We assume that an arbitrary randomized algorithm
chooses with cumulative probability p1 the deterministic algorithms that achieve
a ratio of 1 (here there is only one algorithm), with cumulative probability p2
the deterministic algorithms that achieve a ratio of 2ε

k + 1, and so on. We also
have that:

k+1∑

i=1

pi = 1 (3)

Hence, the competitive ratio of an arbitrary randomized algorithm is:

r = p1 · 1 + p2

(
2ε

k
+ 1

)
+ p3

(
4ε

k
+ 1

)
+ ... + pk+1

(
2k · ε

k
+ 1

)

Since r ≤ 1 + ε, we have that:

p1 + p2

(
2ε

k
+ 1

)
+ p3

(
4ε

k
+ 1

)
+ ... + pk+1

(
2k · ε

k
+ 1

)
≤ 1 + ε

⇒
k+1∑

i=1

pi + p2 · 2ε

k
+ p3 · 4ε

k
+ ... + pk+1 · 2k · ε

k
≤ 1 + ε

From (3) it follows that:

p2 · 2ε

k
+ p3 · 4ε

k
+ ... + pk+1 · 2k · ε

k
≤ ε

⇒ p2 + 2p3 + ... + k · pk+1 ≤ k

2
(4)

We now look at the case that the prediction is wrong. Consider the (random-
ized) set of instances where the path Pi is unblocked, where i is chosen uniformly
at random in {1, ..., k}, and path Pk+1 is blocked. Note that these instances have
error = 2. So, only path Pi is feasible with cost = 1 and OPT = 1. Consider a
deterministic algorithm which explores (until it finds an unblocked path) � ≥ 0
paths among P1, . . . , Pk, then Pk+1, then the remaining paths among the first k.
On the previously given randomized set of instances, it will explore Pk+1 with

Canadian Traveller Problem with Predictions 125

probability (1−�/k), and will find the unblocked path after exactly t explorations
with probability 1/k (for any t). Thus, the expected cost of such an algorithm
on the considered randomized set of instances is:

E� =
(

1 − �

k

)
2ck+1 +

(1 + 3 + · · · + (2k − 1))
k

=
(

1 − �

k

)
2ck+1 + k

Then, the expected cost of the randomized algorithm (which chooses such an
algorithm with probability p�+1) on the given randomized set of instances veri-
fies:

E[ALG] ≥
k∑

�=0

p�+1E� =
k∑

�=0

p�+1

((
1 − �

k

)
2ck+1 + k

)

= 2ck+1

(

1 −
∑k

�=0 p�+1�

k

)

+ k

Equation (4) gives
∑k

�=0 p�+1� ≤ k/2, so we have E[ALG] ≥ ck+1 + k =
k + k

ε . ��

We now give a randomized algorithm that is [1 + ε, k + 4k
ε]-competitive.

Similarly as E-Backtrack, it executes RandBacktrack but interrupts at
some point (determined by Eq. (5)) its execution in order to explore the shortest
unblocked-predicted path.

Theorem 4. For 0 < ε ≤ k, E-RandBacktrack is a randomized [1 + ε, k +
4k
ε]-competitive algorithm.

Proof. We denote by ALG the cost of algorithm E-RandBacktrack and by
Ak−1 the cost of RandBacktrack (both ALG and Ak−1 are random variables).

The proof is based on the following observations.

Observation 1. At the time of the algorithm when (a), (b) or (c) occurs, TV L ≤
ε · cpred. In particular, if (a) or (b) occurs, Ak−1 ≤ ε · cpred.

Indeed, otherwise case (c) would have occurred earlier.

Observation 2. If P1, . . . , Pk are blocked, then Ppred is unblocked and optimal.
In particular, if (b) occurs then Ppred is unblocked and optimal.

Indeed, if P1, . . . , Pk are blocked, there is no other blocked path (as k upper
bounds the number of blocked paths) so Ppred is unblocked. If the set of k
blocked edges are exactly the predicted ones, then Ppred is by definition optimal.
Otherwise, one path Pi is not predicted to be blocked (as k upper bounds the
number of predicted blocked paths), hence cpred ≤ ci ≤ ck. But by definition of
paths P1, . . . , Pk, if they are all blocked then OPT ≥ ck, so again OPT = cpred.

126 E. Bampis et al.

Algorithm 2: E-RandBacktrack

Input : An instance of CTP with prediction with parameter k, ε > 0
Output: An s − t path

1 Ppred, cpred ← shortest path and its cost after removing all predicted
blocked edges

2 P1, . . . , Pk of cost c1, . . . , ck ← k shortest paths except for Ppred
2

3 TVL ← total visited length of RandBacktrack before exploring the
next path

4 Execute RandBacktrack on paths P1, . . . , Pk with parameter k − 1
until one of the following cases occurs:

5 (a) t is reached
6 (b) t is not reached and RandBacktrack terminates
7 (c) the next path Pnew of cost cnew to explore is such that:

TVL + 2cnew > ε · cpred (5)

8 if (a) occurs then Return the found path;
9 else if (b) occurs then

10 Explore Ppred and output it
11 end
12 else
13 Explore Ppred

14 if Ppred is not blocked then output it;
15 else Resume the execution of RandBacktrack;
16 end

Observation 3. If (c) occurs, then Ak−1 >
ε·cpred

2 .

Indeed, when (c) occurs RandBacktrack has cost at least TV L + cnew >
ε · cpred/2.

Then, suppose first that Ppred is unblocked and optimal. Following observa-
tion 1, if (a) or (b) occurs we have ALG ≤ Ak−1 + cpred ≤ (1 + ε)cpred, and in
case (c) also ALG ≤ (1 + ε)cpred. So anyway ALG ≤ (1 + ε)OPT , and in par-
ticular E[ALG] ≤ (1 + ε)OPT . So E-RandBacktrack is (1 + ε)-competitive
when there is no error. As (1 + ε) ≤ k + 4k/ε (ε ≤ k), the robustness bound is
also verified in this case.

Now, suppose that we are in the other case, i.e., Ppred is either blocked, or
unblocked but not optimal. Note that the prediction is not correct here. Following
Observation 2, (b) cannot occur, and one path in P1 . . . , Pk is unblocked (so
RandBacktrack does find a path before terminating). Then in case (a) ALG ≤
Ak−1, and in case (c), anyway, ALG ≤ Ak−1 + 2cpred. So we get:

E[ALG] ≤ E[Ak−1] + 2cpred · Pr(c) (6)
2 If the graph contains less than k disjoint paths, then choose the maximum number

of paths l < k and run RandBacktrack with parameter l−1. The analysis remains
the same.

Canadian Traveller Problem with Predictions 127

where Pr(c) denotes the probability that case c occurs. Following Observation
3, if (c) occurs Ak−1 > ε · cpred/2. Using Markov Inequality, we have:

Pr(c) ≤ Pr
(
Ak−1 >

ε · cpred

2

)
≤ 2E[Ak−1]

ε · cpred
(7)

Using Eqs. (6) and (7) we get E[ALG] ≤ E[Ak−1] + 4E[Ak−1]
ε . As (at least) one

path is unblocked in P1, . . . , Pk, E[Ak−1] ≤ k · OPT , and the result follows. ��
The guarantee provided by E-RandBacktrack (Theorem 4) does not

exactly match the lower bound of Theorem 3. While closing this gap is left as
an open question, we conjecture that the exact (optimal) tradeoff corresponds
to the lower bound [1 + ε, k + k

ε] (for path-disjoint graphs). Towards this con-
jecture, we present two cases where we have an upper bound that matches the
[1 + ε, k + k

ε]-lower bound. The two special cases (proofs omitted) are k = 1
(Theorem 5) and the case of uniform costs (Theorem 6).

For the case k = 1, the algorithm (full description omitted) is a modified
version of RandBacktrack with different probabilities, specifically settled
exploiting the fact that there is (at most) one blocked edge and one predicted
blocked edge.

For the case of uniform cost, the algorithm (full description omitted) explores
at first a path with an appropriate probability. If the path is blocked, it then
executes RandBacktrack on the remaining graph.

Theorem 5. For 0 < ε ≤ 1, there exists a randomized [1 + ε, 1 + 1
ε]-competitive

algorithm when the graph is path-disjoint and k = 1.

Theorem 6. For 0 < ε ≤ k, there exists a randomized [1+ ε, k + k
ε]-competitive

algorithm when the graph is path-disjoint and the costs are uniform.

4 Robustness Analysis

This section is devoted to the analysis of competitive ratios that can be achieved
depending on the error made in the prediction. Section 4.1 deals with determin-
istic bounds, and Sect. 4.2 with randomized ones.

4.1 Deterministic Bounds

As a first result, we show that the lower bound of 2k + 1 on (deterministic)
competitive ratios still holds in our model with prediction even if the prediction
error is (at most) 2 (proof omitted).

Theorem 7. There is no deterministic algorithm that achieves competitive ratio
smaller than 2k +1, even when the prediction has error at most 2 and the graph
is path-disjoint.

128 E. Bampis et al.

We can easily achieve a matching 2k + 1 upper bound using the optimal
deterministic algorithm Backtrack ignoring the predictions completely. Hence,
the lower bound is tight.

We now consider the remaining case, when the error is (at most) 1. In this
case we show that an improvement can be achieved with respect to the 2k + 1
bound. More precisely, we first show in Theorem 8 that for any k ≥ 3 a ratio
2k − 1 can be achieved, and in Theorem 12 that a ratio 3+

√
17

2 � 3.56 can
be achieved for k = 2. We show in Theorems 9 and 11 respectively that these
bounds are tight. Theorem 10 settles the case k = 1.

The two main ingredients of the claimed algorithm (Theorem 8) are (1) a
careful comparison of the lengths of the shortest path and the shortest path
without predicted blocked edges, to decide which one to explore, and (2) the
fact that when the error is at most 1, if a blocked edge is discovered and was
not predicted to be so, then we know exactly the set of blocked edges (i.e., the
predicted ones and the new one) and thus we can determine directly the optimal
solution without further testing.

Theorem 8. There is a (2k−1)-competitive algorithm when the prediction error
is at most 1 and k ≥ 3 is known.

We now show that the upper bound of 2k − 1 (for k ≥ 3) is tight (proof
omitted).

Theorem 9. There is no deterministic algorithm that achieves competitive ratio
smaller than 2k −1, even when the prediction has error at most 1 and the graph
is path-disjoint.

We next examine separately the cases for k = 1 (Theorem 10, proof omitted)
and k = 2.

Theorem 10. When k = 1, there is no deterministic algorithm that achieves
competitive ratio smaller than 3, even when the prediction has error at most 1
and the graph is path-disjoint.

The previous 3-lower bound is clearly tight using the optimal deterministic
algorithm Backtrack (2 · 1 + 1 = 3). For k = 2, we have matching lower and
upper bounds of 3+

√
17

2 � 3.56 (the proof of the lower bound (Theorem 11)
is omitted). The upper bound (Theorem 12) follows from an adaptation of
Err1-Backtrack for the case k = 2 (the description of Algorithm Err1-
Backtrack2 and the proof of the theorem are omitted).

Theorem 11. When k = 2, there is no deterministic algorithm that achieves
competitive ratio smaller than 3+

√
17

2 , even when the prediction has error at most
1 and the graph is path-disjoint.

Theorem 12. There exists a 3+
√
17

2 -competitive algorithm when the prediction
error is at most 1 and k = 2.

Canadian Traveller Problem with Predictions 129

4.2 Randomized Bounds

We now consider randomized algorithms, and as explained in introduction we
focus on graphs with node disjoint paths. Similarly as for the deterministic case,
we first show that the lower bound of k + 1 on (randomized) competitive ratios
still holds in our model with prediction even if the prediction error is (at most) 2.

Theorem 13. There is no randomized algorithm that achieves competitive ratio
smaller than k + 1 against an oblivious adversary, even when the prediction has
error at most 2 and the graph is path-disjoint.

Proof. In what follows we provide a randomized set of instances on which the
expected cost of any deterministic algorithm is at least k + 1 times the opti-
mal cost. It follows from Yao’s Principle [40] that the competitive ratio of any
randomized algorithm is at least k + 1.

Consider a graph G∗ with k + 1 paths P1, P2, ..., Pk, Pk+1, which are node-
disjoint. All the paths have costs equal to 1, meaning that c1 = c2 = ... = ck =
ck+1 = 1.

Paths P1, P2, ... , Pk are predicted to be blocked. We choose i ∈ {1, ..., k+1}
uniformly at random and block all paths Pj with j �= i (k blocked edges as all
paths are node-disjoint). The prediction has an error of at most 2.

So, only the path Pi is feasible at cost 1 and the optimal offline cost is 1.
Furthermore, an arbitrary deterministic online algorithm finds path Pi on the
lth trial for l = 1, ..., k + 1 with probability 1

k+1 .
If the algorithm is successful on its lth try, it incurs a cost of 2l−1, and thus

it has an expected cost of at least 1
k+1

∑k+1
l=1 (2l − 1) = 1

k+1 · (k + 1)2 = k + 1. ��
If k is known and the graph is path-disjoint, then the above k + 1 lower

bound is tight using the optimal randomized online algorithm RandBacktrack
without predictions.

We finally consider the case of error (at most) 1. We show in Theorem 14
(proof omitted) a lower bound of k. We leave as an open question closing this
gap between k and k + 1 when the error is at most 1 and k ≥ 2. For the special
case of k = 1, it is easy to show a matching lower bound of 2.

Theorem 14. There is no randomized algorithm that achieves competitive ratio
smaller than k against an oblivious adversary, even when the prediction has error
at most 1 and the graph is path-disjoint.

Acknowledgements. This work was partially funded by the grant ANR-19-CE48-
0016 from the French National Research Agency (ANR).

References

1. Antoniadis, A., Coester, C., Eliás, M., Polak, A., Simon, B.: Online metric algo-
rithms with untrusted predictions. In: Proceedings of the 37th International Con-
ference on Machine Learning, ICML 2020, 13–18 July 2020, Virtual Event. Proceed-
ings of Machine Learning Research, vol. 119, pp. 345–355. PMLR (2020). http://
proceedings.mlr.press/v119/antoniadis20a.html

http://proceedings.mlr.press/v119/antoniadis20a.html
http://proceedings.mlr.press/v119/antoniadis20a.html

130 E. Bampis et al.

2. Antoniadis, A., Gouleakis, T., Kleer, P., Kolev, P.: Secretary and online matching
problems with machine learned advice. In: Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, 6–12 December 2020, Virtual (2020). https://proceedings.neurips.cc/paper/
2020/hash/5a378f8490c8d6af8647a753812f6e31-Abstract.html

3. Azar, Y., Leonardi, S., Touitou, N.: Flow time scheduling with uncertain process-
ing time. In: Khuller, S., Williams, V.V. (eds.) STOC 2021: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, 21–25 June
2021, pp. 1070–1080. ACM (2021). https://doi.org/10.1145/3406325.3451023

4. Bamas, É., Maggiori, A., Rohwedder, L., Svensson, O.: Learning augmented energy
minimization via speed scaling. In: Larochelle, H., Ranzato, M., Hadsell, R., Bal-
can, M., Lin, H. (eds.) Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
6–12 December 2020, Virtual (2020). https://proceedings.neurips.cc/paper/2020/
hash/af94ed0d6f5acc95f97170e3685f16c0-Abstract.html

5. Bamas, É., Maggiori, A., Svensson, O.: The primal-dual method for learning aug-
mented algorithms. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.,
Lin, H. (eds.) Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12
December 2020, Virtual (2020). https://proceedings.neurips.cc/paper/2020/hash/
e834cb114d33f729dbc9c7fb0c6bb607-Abstract.html

6. Banerjee, S.: Improving online rent-or-buy algorithms with sequential decision
making and ML predictions. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., Lin, H. (eds.) Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12
December 2020, Virtual (2020). https://proceedings.neurips.cc/paper/2020/hash/
f12a6a7477077af66212ef0813bcf332-Abstract.html

7. Bar-Noy, A., Schieber, B.: The Canadian Traveller problem. In: Aggarwal, A. (ed.)
Proceedings of the Second Annual ACM/SIGACT-SIAM Symposium on Discrete
Algorithms, 28–30 January 1991, San Francisco, California, USA, pp. 261–270.
ACM/SIAM (1991). http://dl.acm.org/citation.cfm?id=127787.127835

8. Bender, M., Westphal, S.: An optimal randomized online algorithm for the k-
Canadian Traveller Problem on node-disjoint paths. J. Comb. Optim. 30(1), 87–96
(2013). https://doi.org/10.1007/s10878-013-9634-8

9. Bergé, P., Hemery, J., Rimmel, A., Tomasik, J.: On the competitiveness of memory-
less strategies for the k-Canadian Traveller Problem. In: International Conference
Combinatorial Optimization and Applications (COCOA), Atlanta, United States,
December 2018. https://hal.archives-ouvertes.fr/hal-02022459

10. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

11. Cole, R., Roughgarden, T.: The sample complexity of revenue maximization. In:
Shmoys, D.B. (ed.) Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, 31 May–03 June 2014, pp. 243–252. ACM (2014). https://doi.org/10.
1145/2591796.2591867

12. Demaine, E.D., Huang, Y., Liao, C.-S., Sadakane, K.: Approximating the Cana-
dian Traveller problem with online randomization. Algorithmica 83(5), 1524–1543
(2021). https://doi.org/10.1007/s00453-020-00792-6

https://proceedings.neurips.cc/paper/2020/hash/5a378f8490c8d6af8647a753812f6e31-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/5a378f8490c8d6af8647a753812f6e31-Abstract.html
https://doi.org/10.1145/3406325.3451023
https://proceedings.neurips.cc/paper/2020/hash/af94ed0d6f5acc95f97170e3685f16c0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/af94ed0d6f5acc95f97170e3685f16c0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e834cb114d33f729dbc9c7fb0c6bb607-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e834cb114d33f729dbc9c7fb0c6bb607-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f12a6a7477077af66212ef0813bcf332-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f12a6a7477077af66212ef0813bcf332-Abstract.html
http://dl.acm.org/citation.cfm?id=127787.127835
https://doi.org/10.1007/s10878-013-9634-8
https://hal.archives-ouvertes.fr/hal-02022459
https://doi.org/10.1145/2591796.2591867
https://doi.org/10.1145/2591796.2591867
https://doi.org/10.1007/s00453-020-00792-6

Canadian Traveller Problem with Predictions 131

13. Devanur, N.R., Hayes, T.P.: The adwords problem: online keyword matching with
budgeted bidders under random permutations. In: Chuang, J., Fortnow, L., Pu,
P. (eds.) Proceedings 10th ACM Conference on Electronic Commerce (EC-2009),
Stanford, California, USA, 6–10 July 2009, pp. 71–78. ACM (2009). https://doi.
org/10.1145/1566374.1566384

14. Ergun, J.C., Feng, Z., Silwal, S., Woodruff, D.P., Zhou, S.: Learning-augmented
k-means clustering (2021). https://doi.org/10.48550/ARXIV.2110.14094. https://
arxiv.org/abs/2110.14094

15. Gollapudi, S., Panigrahi, D.: Online algorithms for rent-or-buy with expert advice.
In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9–15 June 2019, Long Beach, Cal-
ifornia, USA. Proceedings of Machine Learning Research, vol. 97, pp. 2319–2327.
PMLR (2019). http://proceedings.mlr.press/v97/gollapudi19a.html

16. Huang, Y., Liao, C.-S.: The Canadian Traveller problem revisited. In: Chao, K.-M.,
Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 352–361. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35261-4 38

17. Im, S., Kumar, R., Qaem, M.M., Purohit, M.: Non-clairvoyant scheduling with
predictions. In: Agrawal, K., Azar, Y. (eds.) SPAA 2021: 33rd ACM Symposium
on Parallelism in Algorithms and Architectures, Virtual Event, USA, 6–8 July
2021, pp. 285–294. ACM (2021). https://doi.org/10.1145/3409964.3461790

18. Lattanzi, S., Lavastida, T., Moseley, B., Vassilvitskii, S.: Online scheduling via
learned weights. In: Chawla, S. (ed.) Proceedings of the 2020 ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, 5–8 January
2020, pp. 1859–1877. SIAM (2020). https://doi.org/10.1137/1.9781611975994.114

19. Lavastida, T., Moseley, B., Ravi, R., Xu, C.: Learnable and instance-robust pre-
dictions for online matching, flows and load balancing. In: Mutzel, P., Pagh, R.,
Herman, G. (eds.) 29th Annual European Symposium on Algorithms, ESA 2021,
6–8 September 2021, Lisbon, Portugal (Virtual Conference). LIPIcs, vol. 204, pp.
59:1–59:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.
org/10.4230/LIPIcs.ESA.2021.59

20. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt Rinehart
and Winston, New York (1977)

21. Lindermayr, A., Megow, N., Simon, B.: Double coverage with machine-learned
advice. In: Braverman, M. (ed.) 13th Innovations in Theoretical Computer Science
Conference, ITCS 2022, 31 January–3 February 2022, Berkeley, CA, USA. LIPIcs,
vol. 215, pp. 99:1–99:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPIcs.ITCS.2022.99

22. Lu, P., Ren, X., Sun, E., Zhang, Y.: Generalized sorting with predictions. In: Le,
H.V., King, V. (eds.) 4th Symposium on Simplicity in Algorithms, SOSA 2021,
Virtual Conference, 11–12 January 2021, pp. 111–117. SIAM (2021). https://doi.
org/10.1137/1.9781611976496.13

23. Lykouris, T., Vassilvitskii, S.: Competitive caching with machine learned advice.
In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–
15 July 2018. Proceedings of Machine Learning Research, vol. 80, pp. 3302–3311.
PMLR (2018). http://proceedings.mlr.press/v80/lykouris18a.html

24. Medina, A.M., Vassilvitskii, S.: Revenue optimization with approximate bid pre-
dictions. CoRR abs/1706.04732 (2017). http://arxiv.org/abs/1706.04732

https://doi.org/10.1145/1566374.1566384
https://doi.org/10.1145/1566374.1566384
https://doi.org/10.48550/ARXIV.2110.14094
https://arxiv.org/abs/2110.14094
https://arxiv.org/abs/2110.14094
http://proceedings.mlr.press/v97/gollapudi19a.html
https://doi.org/10.1007/978-3-642-35261-4_38
https://doi.org/10.1145/3409964.3461790
https://doi.org/10.1137/1.9781611975994.114
https://doi.org/10.4230/LIPIcs.ESA.2021.59
https://doi.org/10.4230/LIPIcs.ESA.2021.59
https://doi.org/10.4230/LIPIcs.ITCS.2022.99
https://doi.org/10.1137/1.9781611976496.13
https://doi.org/10.1137/1.9781611976496.13
http://proceedings.mlr.press/v80/lykouris18a.html
http://arxiv.org/abs/1706.04732

132 E. Bampis et al.

25. Mitzenmacher, M.: Scheduling with predictions and the price of misprediction. In:
Vidick, T. (ed.) 11th Innovations in Theoretical Computer Science Conference,
ITCS 2020, 12–14 January 2020, Seattle, Washington, USA. LIPIcs, vol. 151, pp.
14:1–14:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.
org/10.4230/LIPIcs.ITCS.2020.14

26. Mitzenmacher, M., Vassilvitskii, S.: Algorithms with predictions. In: Roughgarden,
T. (ed.) Beyond the Worst-Case Analysis of Algorithms, pp. 646–662. Cambridge
University Press, Cambridge (2020). https://doi.org/10.1017/9781108637435.037

27. Nikolova, E., Karger, D.R.: Route planning under uncertainty: the Canadian Trav-
eller problem. In: Fox, D., Gomes, C.P. (eds.) Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA,
13–17 July 2008, pp. 969–974. AAAI Press (2008). http://www.aaai.org/Library/
AAAI/2008/aaai08-154.php

28. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Hoboken (1982)

29. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theor. Com-
put. Sci. 84(1), 127–150 (1991). https://doi.org/10.1016/0304-3975(91)90263-2

30. Purohit, M., Svitkina, Z., Kumar, R.: Improving online algorithms via ML predic-
tions. In: NeurIPS, Montréal, Canada, pp. 9684–9693 (2018). https://proceedings.
neurips.cc/paper/2018/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html

31. Rohatgi, D.: Near-optimal bounds for online caching with machine learned advice.
In: Chawla, S. (ed.) Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, 5–8 January 2020, pp. 1834–
1845. SIAM (2020). https://doi.org/10.1137/1.9781611975994.112

32. Shiri, D., Salman, F.S.: On the randomized online strategies for the k-Canadian
traveler problem. J. Comb. Optim. 38, 254–267 (2019)

33. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985). https://doi.org/10.1145/2786.2793

34. Vee, E., Vassilvitskii, S., Shanmugasundaram, J.: Optimal online assignment with
forecasts. In: Parkes, D.C., Dellarocas, C., Tennenholtz, M. (eds.) Proceedings 11th
ACM Conference on Electronic Commerce (EC-2010), Cambridge, Massachusetts,
USA, 7–11 June 2010, pp. 109–118. ACM (2010). https://doi.org/10.1145/1807342.
1807360

35. Wang, S., Li, J., Wang, S.: Online algorithms for multi-shop ski rental with
machine learned advice. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.,
Lin, H. (eds.) Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12
December 2020, Virtual (2020). https://proceedings.neurips.cc/paper/2020/hash/
5cc4bb753030a3d804351b2dfec0d8b5-Abstract.html

36. Wei, A.: Better and simpler learning-augmented online caching. In: Byrka, J.,
Meka, R. (eds.) Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 176, pp. 60:1–60:17. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://
doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.60. https://drops.dagstuhl.de/
opus/volltexte/2020/12663

https://doi.org/10.4230/LIPIcs.ITCS.2020.14
https://doi.org/10.4230/LIPIcs.ITCS.2020.14
https://doi.org/10.1017/9781108637435.037
http://www.aaai.org/Library/AAAI/2008/aaai08-154.php
http://www.aaai.org/Library/AAAI/2008/aaai08-154.php
https://doi.org/10.1016/0304-3975(91)90263-2
https://proceedings.neurips.cc/paper/2018/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://doi.org/10.1137/1.9781611975994.112
https://doi.org/10.1145/2786.2793
https://doi.org/10.1145/1807342.1807360
https://doi.org/10.1145/1807342.1807360
https://proceedings.neurips.cc/paper/2020/hash/5cc4bb753030a3d804351b2dfec0d8b5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/5cc4bb753030a3d804351b2dfec0d8b5-Abstract.html
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.60
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.60
https://drops.dagstuhl.de/opus/volltexte/2020/12663
https://drops.dagstuhl.de/opus/volltexte/2020/12663

Canadian Traveller Problem with Predictions 133

37. Wei, A., Zhang, F.: Optimal robustness-consistency trade-offs for learning-
augmented online algorithms. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., Lin, H. (eds.) Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12
December 2020, Virtual (2020). https://proceedings.neurips.cc/paper/2020/hash/
5bd844f11fa520d54fa5edec06ea2507-Abstract.html

38. Westphal, S.: A note on the k-Canadian Traveller problem. Inf. Process.
Lett. 106(3), 87–89 (2008). https://www.sciencedirect.com/science/article/pii/
S0020019007002876

39. Xu, Y., Hu, M., Su, B., Zhu, B., Zhu, Z.: The Canadian Traveller problem and its
competitive analysis. J. Comb. Optim. 18(2), 195–205 (2009). https://doi.org/10.
1007/s10878-008-9156-y

40. Yao, A.C.C.: Probabilistic computations: toward a unified measure of complexity.
In: 18th Annual Symposium on Foundations of Computer Science (SFCS 1977),
pp. 222–227 (1977)

https://proceedings.neurips.cc/paper/2020/hash/5bd844f11fa520d54fa5edec06ea2507-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/5bd844f11fa520d54fa5edec06ea2507-Abstract.html
https://www.sciencedirect.com/science/article/pii/S0020019007002876
https://www.sciencedirect.com/science/article/pii/S0020019007002876
https://doi.org/10.1007/s10878-008-9156-y
https://doi.org/10.1007/s10878-008-9156-y

The Power of Amortized Recourse
for Online Graph Problems

Alison Hsiang-Hsuan Liu(B) and Jonathan Toole-Charignon

Department of Information and computing sciences, Utrecht University,
Utrecht, The Netherlands

{h.h.liu,j.c.f.toole-charignon}@uu.nl

Abstract. In this work, we study online graph problems with monotone-
sum objectives, where the vertices or edges of the graph are revealed one
by one and need to be assigned to a value such that certain proper-
ties of the solution hold. We propose a general two-fold greedy algo-
rithm that augments its current solution greedily and references yard-
stick algorithms. The algorithm maintains competitiveness by strate-
gically aligning to the yardstick solution and incurring recourse. We
show that our general algorithm achieves t-competitiveness while incur-
ring at most wmax·(t+1)

t−1
amortized recourse for any monotone-sum prob-

lems with integral solution, where wmax is the largest value that can be
assigned to a vertex or an edge. For fractional monotone-sum problems
where each of the assigned values is between [0, 1], our general algo-
rithm incurs at most t+1

wmin·(t−1)
amortized recourse, where wmin is the

smallest non-negative value that can be assigned. We further show that
the general algorithm can be improved for three classical graph prob-
lems. For Independent Set, we refine the analysis of our general algo-
rithm and show that t-competitiveness can be achieved with t

t−1
amor-

tized recourse. For Maximum Cardinality Matching, we limit our
algorithm’s greed to show that t-competitiveness can be achieved with

(2−t∗)
(t∗−1)(3−t∗) + t∗−1

3−t∗ amortized recourse, where t∗ is the largest number

such that t∗ = 1+ 1
j

≤ t for some integer j. For Vertex Cover, we show
that our algorithm guarantees a competitive ratio strictly smaller than 2
for any finite instance in polynomial time while incurring at most 3.33
amortized recourse. We beat the almost unbreakable 2-approximation
in polynomial time by using the optimal solution as the reference with-
out computing it. We remark that this online result can be used as an
offline approximation result (without violating the unique games conjec-
ture [20]) to partially improve upon the constructive algorithm of Monien
and Speckenmeyer [23].

1 Introduction

Graph optimization problems serve as stems for various practical problems.
A solution for such a problem can be described as an assignment from the ele-
ments of the problem (e.g. vertices of a graph) to non-negative real numbers such
that the constraints between the elements are satisfied. In the online setting, the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Chalermsook and B. Laekhanukit (Eds.): WAOA 2022, LNCS 13538, pp. 134–153, 2022.
https://doi.org/10.1007/978-3-031-18367-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18367-6_7&domain=pdf
http://orcid.org/0000-0002-0194-9360
http://orcid.org/0000-0003-3234-4564
https://doi.org/10.1007/978-3-031-18367-6_7

The Power of Amortized Recourse for Online Graph Problems 135

most considered models are the vertex-arrival and edge-arrival models. That
is, the graph is revealed vertex-by-vertex or edge-by-edge, and once an element
arrives, the online algorithm has to immediately make an irrevocable decision on
the new element. The performance of an online algorithm is measured by com-
petitive ratio against the optimal offline solution. Many graph optimization prob-
lems are non-competitive: the larger the input size, the larger the competitive
ratio of any deterministic online algorithm. In other words, a non-competitive
problem has no constant-competitive online algorithm.

The pure online model is pessimistic, in that altering decisions may be possi-
ble (albeit expensive) or limited knowledge about the future may be available in
the real world. In this work, we investigate online graph optimization problems
in the recourse model. That is, decisions made by the online algorithm can be
revoked. In particular, we aim at finding out the amount of amortized recourse
that is sufficient and/or necessary for attaining a desirable competitive ratio for
a given problem.

Uncertainty and Amortized Recourse. The competitive ratio can be seen
as quantification of how far the quality of an online algorithm’s solution is from
that of a conceptual optimal offline algorithm that has complete knowledge of the
input and unlimited computational power. Therefore, the non-competitiveness of
graph optimization problems suggests that uncertainty of the input is critical to
these problems. However, the online algorithm may perform better when the irre-
vocability constraint is relaxed or knowledge about future inputs is available. It is
intriguing to investigate to what extent these problems remain non-competitive
under these conditions, in particular to determine how much revocability or
knowledge the online algorithm needs in order to attain a desirable competitive
ratio.

Beyond the practical motivation of relaxing irrevocability of online algo-
rithms’ decisions, amortized recourse also provides insight on how a given online
problem is affected by uncertainty. In particular, it captures how rapidly the
structure of the offline optimal solution can change: the fewer elements required
to do so, the larger the amortized recourse. Furthermore, the impact of uncer-
tainty is directly correlated with this idea: the faster the optimal solution can
change, the more impact uncertainty on future inputs will have. Different prob-
lems may attain constant competitive ratios using different amounts of (amor-
tized) recourse, which implies variability in the impact of uncertainty. For exam-
ple, to attain a constant competitive ratio, one needs exactly O(log n) recourse
per edge for min-cost bipartite matching [21], while one only needs a constant
amount of recourse per element for maximum independent set and minimum
vertex cover [10].

Online Monotone-Sum Problems. We study online graph problems in the
vertex-arrival or the edge-arrival models. Along with the newly-revealed element,
which can be a vertex or an edge according to the arrival model, there may be
constraints imposed upon some subset of the currently-revealed elements that a
feasible solution should satisfy. An algorithm aims at finding a feasible solution
that maximizes (or minimizes) the objective. A problem is a sum problem if

136 A. H.-H. Liu and J. Toole-Charignon

the objective is a sum of the values assigned to each element. If the value of
the optimal solution of an instance is always greater than or equal to that of a
subset of the instance, then the problem is a monotone problem.1

An online algorithm makes decisions upon arrival of each element. In the
recourse model, the online algorithm can also revoke an earlier decision that it
made and pay for the revocation. We aim to reduce the competitive ratio with
as little total recourse (i.e. as few revocations) as possible.

Our Contribution. We propose a general online algorithm Target-and-Switch
(TaSt), which is parameterized by a target competitive ratio t and uses a yard-
stick algorithm as a reference. The yardstick algorithm can be ant exact opti-
mal algorithm or an incremental (defined later) approximation algorithm if one
aims at polynomial time online algorithms. Throughout the process, the TaSt

algorithm compares itself to the yardstick algorithm’s solution and strategically
switches its solution to that of the yardstick algorithm. Overall, the TaSt algo-
rithm provides a trade-off between amortized recourse and competitive ratio for
arbitrary monotone-sum graph problems. In particular, we consider two measure-
ments of recourse cost: number of reassigned elements, or the amount of change in
the reassigned values. Our result works for both unweighted and weighted prob-
lems, and it even works for fractional optimization problems, where the smallest
non-zero value assigned to a single element can be a real number between 0
and 1. The following is the main result of our work, where the bound of amor-
tized recourse works for both measurements of recourse cost (Theorem 1 and
Corollary 1).

Main result (informal). Using an optimal algorithm (resp. an incremental
α-approximation algorithm, defined formally in Sect. 2) as the yardstick, TaSt

is t-competitive (resp. (t · α)-competitive) and incurs at most wmax·(t+1)
min{1,wmin}·(t−1)

amortized recourse for any monotone-sum graph problem where wmax and wmin

are the maximum and minimum non-zero values that can be assigned to an
element.2

TaSt is two-fold greedy. First, it assigns the value greedily once an element
arrives. Second, the algorithm aligns its solution to the yardstick solution com-
pletely and incurs recourse when the current solution fails to be t-competitive
against the yardstick solution.

In general, the TaSt algorithm works for any optimization problem. The chal-
lenge is to bound the amortized recourse that it incurs, as the complete alignment
may require a vast amount of recourse. By looking closer at a specific problem,
we can show a tighter bound on the amount of recourse needed. We use a sophis-
ticated analysis for the Independent Set problem and improve the recourse
bound (Theorem 2).
1 The Dominating Set and Matching with delays problems are sum problems

but not monotone. The Coloring Problem is monotone but not a sum problem.
2 The bound of amortized recourse wmax·(t+1)

wmin·(t−1)
is larger when the elements can be

assigned minimum non-zero values smaller than 1. For example, the fractional
Vertex Cover problem in [24].

The Power of Amortized Recourse for Online Graph Problems 137

The two-fold greedy algorithm may perform better when the greediness is
relaxed. Moreover, by choosing different yardstick algorithms and tuning the
alignment to the yardstick carefully, the amortized recourse can be further
reduced. We show that for the Maximum Cardinality Matching problem,
partially aligning to the yardstick solution is more recourse-efficient (Theorem 5).

For the Vertex Cover problem, we show that a special version of TaSt

with t = 2 − 2
OPT

incurs a very small amount of amortized recourse (Theorem 8)
and is (2 − 2

OPT
)-competitive, where OPT is the size of the optimal vertex cover3

(Theorem 7). Our algorithm uses an optimal solution as a yardstick. The key to
the polynomial time complexity is that instead of explicitly finding the yardstick
assignment, we show that the yardstick cannot be too “far” from our solution at
any moment if the target competitive ratio 2− 2

OPT
is not already achieved. More

specifically, by restricting the range of greedy choice, we can show that the yard-
stick solution can be aligned partially within a constant amount of amortized
recourse. Thus, our result breaks the almost unbreakable 2-approximation for
the Vertex Cover problem and improves upon that of Monien and Specken-
meyer [23] for a subset of the graphs containing odd cycles of length no less than
2k+3 (for which 2− 2

OPT
< 2− 1

k+1), using an algorithm that is also constructive.
Our results are summarized in Table 1, which illustrates the power of amor-

tization.

Table 1. Summary of our results. Note that t can be any real number larger than 1.
For Maximum Matching, t∗ is the largest number such that t∗ ≤ t and t∗ = 1 + 1

j

for some integer j. The note P means that the algorithm is a polynomial-time online
algorithm.

(Competitive ratio,
worst case recourse)

(Competitive ratio, amortized recourse)

Monotone-sum
problems

(tα,
wmax·(t+1)

min{wmin,1}·(t−1)
) (Theorem 1, Corollary 1,

P with incremental α-approximation
algorithms)

Maximum
independent set

(2.598, 2) [10] (t, t
t−1

) (Theorem 2)
(2.598, 1.626) (Theorem 2)

Maximum
matching

(k, O(log k
k

) + 1)) [2]
(1.5, 2) [10]

(t,
(2−t∗)

(t∗−1)(3−t∗) + t∗−1
3−t∗) (Theorem 5, P)

((1.5, 1) with t∗ = 1.5)

Minimum vertex
cover

(2, 1) [10] (2− 2
OPT

, 10
3
) (Theorem 8, P)

Related Work. Typically, online graph problems such as maximum indepen-
dent set, maximum cardinality matching, minimum vertex cover, minimum dom-
inating set, can be modeled as inclusion/exclusion problems. In these problems,
any individual element (vertex or edge as appropriate) is either included in or

3 Note that over all instances, OPT can be arbitrarily large. Thus, there is no ε > 0 for
which 2 − 2

OPT
≤ 2 − ε over all instances. Therefore, our result does not violate the

unique games conjecture [20].

138 A. H.-H. Liu and J. Toole-Charignon

excluded from the solution. In our terminology, the inclusion and exclusion of
an element is assigning values 1 and 0 to it, respectively. Recourse is incurred
each time the inclusion/exclusion status of an element is changed. The min-cost
matching, Steiner tree, facility location, and routing problems are also inclu-
sion/exclusion problems, but the cost of an edge/vertices inclusion is weighted.
That is, the edges/vertices are assigned values 0 or 1, and the cost incurred by a
value-1 edge/vertex is its weight. The scheme also works for non-monotone sum
problems. For example, in coloring and bin-packing problems, the assignment
of vertices/items to colors/bins can be modeled as assigning the vertices/items
non-negative integral numbers, which are the indices of the colors/bins.

The closest previous result is the work by Boyar et al. [10]. The authors inves-
tigated the Independent Set, Maximum Cardinality Matching, Ver-
tex Cover, and Minimum Spanning Forest problems, which are all non-
competitive in the pure online model. The authors showed that the com-
petitive ratio of these problems can be massively reduced to a constant by
incurring at most 2 recourse for any single element. Note that the bounds
of the worst case recourse are upper bounds of the amortized recourse.
Moreover, the algorithms in [10] incur at least 1.5 amortized recourse for
the Maximum Cardinality Matching problem and at least 0.5 amortized
recourse for the Vertex Cover problem.

There is a line of research on online matching problems with recourse.
Angelopoulos et al. [2] studied a more general setting forMaximal Cardinality
Matching and showed that given that no element incurs more than k recourse,
there exists an algorithm that attains a competitive ratio of 1+O(1/

√
k). Megow

and Nölke [21] showed that for the Min-Cost Bipartite Matching problem,
constant competitiveness is achievable with amortized recourse O(log n), where n
is the number of requests. Bernstein et al. [6] showed that there exists an algorithm
that achieves 1-competitiveness with O(log2 n) amortized recourse for the Bipar-
tite Matching problem, where n is the number of vertices inserted. The result
also shows that to achieve 1-competitiveness forVertex Cover, any online algo-
rithm needs at least Ω(n) amortized recourse per vertex.

In addition, there has been extensive work on online algorithms in the
recourse model for a variety of different problems. For amortized recourse, stud-
ied problems include online bipartite matching [6], graph coloring [9], minimum
spanning tree and traveling salesperson [22], Steiner tree [12], online facility
location [11], bin packing [13], submodular covering [14], and constrained opti-
mization [3].

Graph problems model various real-world issues whose performance guar-
antees are often abysmal, as they are notoriously non-competitive in the pure
online model. Prior work has shown curiosity about the conditions under which
these problems become competitive, and these problems have been investigated
under different models out of both practical and theoretical interests. Other than
the recourse model, considered models include paying for a delay in the timing
of decision making to achieve a better solution [5,7]. Another model for delayed
decision making is the reordering buffer model [1], where the online algorithm
can delay up to k decisions by storing the elements in a size-k buffer.

The Power of Amortized Recourse for Online Graph Problems 139

The impact of extra knowledge about the input has also been studied. For
example, once a vertex arrives, the neighborhood is known to the algorithm [16].
In the lookahead model, an online algorithm is capable of foreseeing the next
events [1]. Predictions provided by machine learning are also considered for graph
problems [4]. Finally, there are also works where the integral assignment restric-
tions are relaxed for vertex cover and matching problems [24].

Another major area of related work for practically any problem considered in
the online model is polynomial-time approximation algorithms for the equivalent
problem in the offline setting. The link between the two is particularly salient
when considering a polynomial-time online algorithm, as this online algorithm
can also be run in polynomial time in the offline setting by processing the graph
as if it were revealed in an online manner.

In the case of minimum vertex cover, assuming the unique games conjec-
ture, it is not possible to obtain an approximation factor of (2 − ε) for fixed
ε > 0 [20]. However, results have been obtained for parameterized ε. In par-
ticular, Halperin [15] showed an approximation factor of 2 − (1 − o(1))2 ln lnΔ

lnΔ
on graphs with maximum degree Δ, and Karakostas [19] showed an approxi-
mation factor of 2 − θ(1√

logn
). Both of these results use semidefinite relaxations

of the problem, whereas Monien and Speckenmeyer [23] had previously used a
constructive approach to show an approximation factor of 2 − 1

k+1 for graphs
without odd cycles of length at most 2k + 1.

Paper Organization. Section 2 defines monotone-sum graph problems and
the amortized recourse model. We propose a general algorithm TaSt for finding
the trade-off between the desired competitive ratio and the amortized recourse
needed. Section 3 provides a refined analysis on the TaSt algorithm on the
Independent Set problem. Section 4 discusses an existing algorithm [2], which
is a variant of TaSt algorithm, for the Maximum Cardinality Matching
problem that is less greedy in aligning its solution and obtains a better trade-
off. Section 5 introduces a polynomial-time version of TaSt algorithm for the
Vertex Cover problem that limits both greedy aspects. This algorithm can
also be used as a novel offline approximation algorithm for certain graph classes.
Due to space constraints, we only provide proof ideas for the theorem. The
detailed proof for all lemmas and theorems can be found in the full version of
this paper.

2 Monotone-Sum Graph Problems and a General
Algorithm

For an online graph problem Q on a graph G = (V,E), which is unknown a priori,
we consider either the vertex-arrival model or the edge-arrival model. In the
vertex-arrival model (resp. edge-arrival model), the elements in V (resp. elements
in E) arrive one at a time, and an algorithm has to assign each element a non-
negative value in [0, wmax] such that the assignment satisfies certain properties
associated with Q. Formally, the assignment is defined as A : X → R

+, where

140 A. H.-H. Liu and J. Toole-Charignon

X is V or E, such that A(X) satisfies a set of properties PQ. The value of
a feasible assignment A is defined as a function value : X × A(X) → R

+,
which should be minimized or maximized as appropriate. In this work, we focus
on the problems with sum objectives, that is, value(X ,A(X)) =

∑
x∈X A(x).

Moreover, we concern ourselves about the impact of lacking information on the
optimality of the solution. Therefore, we consider monotone sum graph problems
where given a feasible assignment and a newly-arrived element, there is always
a value in [0, wmax] that can be assigned to the new element such that the new
assignment is feasible.4

We denote the assignment on input X returned by the algorithm ALG by
ALG(X). We abuse the notation X to denote the graph revealed by the input
X . We further abuse notation and denote the total value of the assignment by
ALG(X) as well. That is, ALG(X) =

∑
xi∈X ALG(xi). When the context is clear,

the parameter X is dropped.
We study the family of monotone-sum graph problems, which is defined as

follows. Similarly, we define the family of incremental algorithms. Note that a
monotone-sum problem can be a maximization or a minimization problem.

Definition 1. The projection of an assignment A(G) on an induced subgraph
H of G assigns to each element in H the same value that A(G) does in G.

Definition 2. Monotone-sum graph problems. A sum problem is mono-
tone if for any graph G and any induced subgraph H of G, 1) the projection of
any feasible assignment A(G) on H is also feasible, and 2) OPT(H) ≤ OPT(G),
where OPT is an optimal solution.

Definition 3. Incremental algorithms. An algorithm ALG is incremental if
for any graph G corresponding to the instance X and any induced subgraph H of
G, ALG(H) ≤ ALG(G). Furthermore, the projection of ALG(X) on a prefix X ′ of
instance X does not have a better objective value than the assignment ALG(X ′).5

In this work, the performance of an online algorithm is measured by the
competitive ratio. An online algorithm ALG attains a competitive ratio of t if
max{ ALG(X)

OPT(X) ,
OPT(X)
ALG(X)} ≤ t for any instance X , where OPT is the optimal offline

algorithm that knows all information necessary for solving the problem. In the
recourse model, the online algorithm can revoke its decisions and incurs recourse
cost. There are two types of recourse cost considered in this paper:

– Type-1: The recourse cost is defined as the number of elements which
assignment values are changed. Formally,

∑
xi∈X 1[A1(xi) �= A2(xi)] when

an assignment on instance X is changed from A1(X) to A2(X).
– Type-2: The recourse cost is defined as the amount of change of the

assignment value. Formally,
∑

xi∈X |A1(xi) − A2(xi)| when an assignment
on instance X is changed from A1(X) to A2(X).

4 Classical graph problems such as Independent Set, Maximum Cardinality
Matching, and Vertex Cover all satisfy this property.

5 For example, the Ramsey algorithm in [8] is an incremental algorithm. Also note
that any online algorithm is an incremental algorithm.

The Power of Amortized Recourse for Online Graph Problems 141

We study the trade-off between the competitive ratio and the amortized recourse.
That is, the total incurred recourse cost divided by the number of elements that
should be assigned a value in the final instance. We define a family of algorithms
for monotone-sum problems.

Target-and-Switch (TaSt) Algorithm. The TaSt algorithm uses a yardstick
algorithm REF as a reference, where the yardstick can be the optimal algorithm
or an incremental α-approximation algorithm. Throughout the process, TaSt

keeps track of the yardstick solution value. Once a new element arrives, TaSt

greedily assigns a feasible value6 to the newly-revealed element if this assignment
remains t-competitive relative to the yardstick algorithm’s solution. Otherwise,
TaSt switches its assignment to the one by the yardstick algorithm and incurs
recourse. (See Algorithm 1).

Algorithm 1. TaSt algorithm for monotone-sum graph problems
ALG ← 0
while new element v arrives do

g ← the best value from [0, wmax] such that no feasibility constraint is violated
if the new assignment will fail to be t-competitive then � max{ ALG+g

OPT
, OPT
ALG+g

} > t
Switch(OPT)

else
incorporate the greedy assignment

end if
ALG ← the value of TaSt’s current assignment

end while

function Switch(assignment A)
for every element x do

if TaSt(x) �= A(x) then
change the assignment of element x into A(x)

end if
end for

end function

Now, we show that the TaSt algorithm achieves the desired competitive ratio t
with at most polynomial of t amortized recourse. In our analysis, we use the
following observation heavily (including for Theorem 1).

Observation 1. For all xi ≥ 0 and yi > 0, Σixi

Σiyi
≤ maxi

xi

yi
.

Theorem 1. Using an optimal algorithm (resp. incremental α-approximation
algorithm) as the yardstick, TaSt is t-competitive (resp. (t · α)-competitive) and
incurs at most wmax·(t+1)

t−1 Type-2 amortized recourse for any monotone-sum
graph problem where wmax is the maximum value that can be assigned to an
element. The bound also works for Type-1 amortized recourse.
6 Note that there always exists a value such that the new assignment is feasible since

the problem is monotone.

142 A. H.-H. Liu and J. Toole-Charignon

Proof (Ideas.) We can show that any optimal solution satisfies the incremen-
tal property (see the full version) and thus can be seen as an incremental 1-
approximation algorithm.

Since recourse is incurred only at the moments when a switch happens in the
TaSt algorithm, we partition the process of the algorithm into phases according
to the switches. Phase i consists all the events after the (i − 1)-th switch until
the i-th switch. By Observation 1, the amortized recourse for the whole instance
is bounded by the maximum amortized recourse incurred within a phase. There-
fore, we consider the amortized recourse incurred by the (i + 1)-th switch for
arbitrary i ≥ 0.

Let REFi and TaSi denote the value of the yardstick algorithm’s solution
and the TaSt algorithm’s solution right after the i-th switch, respectively. By
construction, TaSi = REFi. Let ALG denote the value of TaSt’s solution right
before the arrival of x, which triggers the (i + 1)-th switch. The total Type-2
recourse cost is at most ALG + REFi+1 (where the TaSt algorithm changes the
value on every element to zero and then changes it to the REF assignment).

The main ingredients for the proof are:

– Property 1: Monotonicity of the problem and the incremental nature of REF
implies that REFi ≤ REFi+1.

– Property 2: The incremental nature of TaSt during a phase implies that
ALG ≥ REFi.

– Property 3: By the switching condition of TaSt, ALG < REFi+1/t for maxi-
mization problems, and ALG + wmax > t · REFi+1 for minimization problems.

Maximization Problems. By Property 1 and the fact that the assigned
values are at most wmax, we can show that the adversary needs to release at least
REFi+1−REFi

wmax
elements such that the yardstick assignment value increases enough to

trigger the switch. By Property 2 and Property 3, REFi+1−REFi
wmax

≥ (1−1/t)·REFi+1
wmax

.
By Property 3, the total recourse incurred by the (i + 1)-th switch is at most
ALG+REFi+1 < (1+1/t)·REFi+1. Hence, the Type-2 amortized recourse incurred
in phase i + 1 is bounded by wmax·(1+1/t)·REFi+1

(1−1/t)·REFi+1
= wmax·(t+1)

t−1 .

Minimization Problems. In minimization problems, the (i+1)-th switch may
be triggered by shifting the REF assignment completely but without changing
its value. In this case, a massive amount of recourse is incurred by a single
input. However, we can show by Property 3 that in this case, the ALG value
must be large enough to trigger the switch. Thus, we can bound the number
of elements released during phase i + 1 by the change of TaSt assignment’s
total value. That is, it is at least ALG−TaSi

wmax
+ 1 = ALG−REFi

wmax
+ 1, where the 1 is

the element which triggers the switching. By Property 1 and Property 2, the
number is at least (1−1/t)·(ALG+wmax)

wmax
. By Property 3, the total recourse incurred

by the (i + 1)-th switch is at most ALG + REFi+1 < (1 + 1/t) · ALG + wmax/t.
Therefore, the Type-2 amortized recourse incurred in phase i + 1 is bounded
by wmax·((1+1/t)·ALG+wmax/t)

(1−1/t)·(ALG+wmax)
≤ wmax·(t+1)

t−1 . ��

The Power of Amortized Recourse for Online Graph Problems 143

The yardstick algorithm can be the optimal offline algorithm. Since the prob-
lem is monotone, our algorithm can be t-competitive for arbitrary t > 1. Fur-
thermore, if we apply a polynomial-time incremental α-approximation algorithm
as the yardstick, then our algorithm also runs in polynomial time.

The results work for weighted versions of problems, and it also work for
fractional assignment problems, where the value assigned to any element is in
[0, 1] (for example, the fractional Vertex Cover problem in [24]). In this case,
the Type-2 amortized recourse is bounded above by the Type-1 amortized
recourse:

Corollary 1. For a fractional monotone-sum problem, TaSt is (t·α)-competitive
and incurs at most t+1

wmin·(t−1) Type-1 amortized recourse using an incremental
α-approximation algorithm as the yardstick. The bound also works for Type-2
amortized recourse.

The monotone-sum problem property captures many classical graph opti-
mization problems such as Independent Set, Maximum Cardinality
Matching, and Vertex Cover. The three problems can be interpreted as
a special case of general monotone-sum problems as follows.

Independent Set Problem in Vertex-Arrival Model. Vertices arrive one
at a time and should be assigned a value 0 or 1. Once a vertex is revealed, the
edges between it and its previously-revealed neighbors are known. The goal is
to find a maximum value assignment such that for any edge, the sum of values
assigned to the two endpoints is at most 1.

Maximum Cardinality Matching Problem in Vertex-Arrival or Edge-
Arrival Model. Edges or vertices arrive one at a time and each of the edges
should be assigned a value 0 or 1. The goal is to find a maximum value assignment
such that for any vertex, the sum of values assigned to its incident edges is at
most 1.

Vertex Cover Problem in Vertex-Arrival Model. Vertices arrive one at a
time and should be assigned a value 0 or 1. Once a vertex is revealed, the edges
between it and its previously-revealed neighbors are known. The goal is to find
a minimum value assignment such that for any edge, the sum of values assigned
to its two endpoints is at least 1.

Since the available value for each element is either 0 or 1 in these three
problems, we say that an element is accepted if it is assigned a value 1. Similarly,
an element is rejected if it is assigned a value 0. An element is late-accepted if
its value is changed from 0 to 1 after its arrival, and late-rejected if its value is
changed from 1 to 0 after its arrival. Furthermore, since the value for any element
only changes between 0 and 1, the Type-1 recourse cost and Type-2 recourse
cost are equivalent in these three problems. Therefore, we have the following
corollary.

144 A. H.-H. Liu and J. Toole-Charignon

Corollary 2. The TaSt algorithm attains competitive ratio t > 1 while incurring
at most t+1

t−1 (Type-1 or Type-2) amortized recourse for Independent Set,
Maximum Cardinality Matching, and Vertex Cover problems.

3 Maximum Independent Set

For the maximum independent set problem in the vertex-arrival model, the algo-
rithm proposed by Boyar et al. incurs at most 2 amortized recourse while main-
taining a competitive ratio of 2.598 [10]. By Theorem 1, the general TaSt algo-
rithm incurs at most t+1

t−1 amortized recourse and guarantees a competitive ratio
of t. In this section, we show that the amortized recourse incurred by TaSt is
even smaller by a more sophisticated analysis.

Lemma 1 (Instance reduction). For any instance (G, σ) of the maximum
independent set problem, there exists an instance (G′, σ′) for which any newly
revealed vertex is either accepted by TaSt or is part of the optimal offline solution
when TaSt incurs its next switch, but not both, such that the amortized recourse
for (G′, σ′) is at least that for (G, σ).

By Lemma 1, given any input (G, σ), its amortized recourse incurred by TaSt

is bounded above by that of its reduced instance (G′, σ′). In Theorem 2, we
provide an upper bound of the amortized recourse incurred by TaSt against any
reduced instance, and thus that this upper bound holds for any instance.

Theorem 2. For the maximum independent set problem, given a target com-
petitive ratio t > 1, TaSt is t-competitive while incurring at most t

t−1 amortized
recourse.

Proof (Ideas). We prove this theorem by using the same phase partition argu-
ment in the proof of Theorem 1 on any reduced instance (G′, σ′). Assume that
every vertex is released with some “budget” B, which is a function of t, for
later recourse. Our attempt is to find a sufficient B such that the total recourse
incurred by TaSt in one phase is no more than the total recourse budget carried
by the vertices released in this phase. That is, the total recourse incurred by one
switch can be “paid” by the recourse budget from the newly revealed vertices.
By Lemma 1 and Observation 1, TaSt incurs at most B amortized recourse.

By Lemma 1, in the reduced instance, any newly revealed vertex is either
accepted by TaSt or is part of OPTi+1. Therefore, we can show that the number
of vertices revealed in phase i + 1 that are part of OPTi+1 is bounded above
by OPTi+1 − OPTi−1, which implies that it is sufficient for the budget to satisfy
B ≥ ALG+OPTi+1

OPTi+1−OPTi−1
. Furthermore, we incorporate both the number of vertices in

phase i + 1 that are accepted by TaSt and the number of vertices revealed in
phase i that are accepted by TaSt into our analysis and show that the lower
bound on the required budget is largest when there are no such vertices.

We conclude that it is sufficient for each newly-revealed vertex to carry bud-
get B = t

t−1 . Thus, TaSt is t-competitive while incurring at most t
t−1 amortized

recourse. ��

The Power of Amortized Recourse for Online Graph Problems 145

Theorem 3. For any 1 < t ≤ 2, ε > 0, and t-competitive deterministic online
algorithm, there exists an instance for which the algorithm incurs at least 1

t−1 −ε
amortized recourse.

Proof (Ideas). Consider any t-competitive online algorithm against an adver-
sary that constructs a complete bipartite graph and only reveals new vertices
in the partition which does not contain the algorithm’s current solution. This
means that the maximum number of vertices that the algorithm’s solution can
contain will only increase if the algorithm moves its solution from one partition
to the other. Furthermore, in doing so, the algorithm is forced to late-reject all
vertices in its old solution in order to late-accept all vertices in its new solution.

By the structure of this adversary, we can show that 1) each partition-
changing switch will incur at least 1

t recourse amortized over the size of the
revealed graph when the switch occurs, and 2) there are at most t times more
vertices at switch i + 1 than at switch i. Therefore, the recourse incurred by
switches up to switch i amortized over the size of the revealed graph f(i) satis-
fied the recurrence relation f(i) = 1

t + 1
t · f(i − 1), where f(1) = 1. Solving this

recurrence relation, we conclude that for any 1 < t ≤ 2, ε > 0, and t-competitive
deterministic online algorithm, there exists an instance for which the algorithm
incurs at least 1

t−1 − ε amortized recourse. ��

4 Maximum Cardinality Matching

The TaSt algorithm greedily aligns with the yardstick solution completely and
incurs a lot of recourse. However, for some of the elements whose value is changed,
the alignment may not contribute to the improvement of the competitive ratio
as much as the alignment of other elements. This observation suggests that it
may be possible to reduce the amount of amortized recourse while maintain-
ing t-competitiveness by switching the solution only partially into the yard-
stick. In this section, we show that the L-Greedy algorithm by Angelopoulos
et al. [2], which is in fact a TaSt algorithm that uses an optimal solution as
the yardstick without aligning to it fully, incurs less amortized recourse for the
Maximum Cardinality Matching problem.

L-Greedy Algorithm [2]. The algorithm is associated with a parameter L.
Throughout the process, the L-Greedy algorithm partially switches its solution
to the optimal once by eliminating all augmenting paths with length at most
2L + 1. That is, it late rejects all the edges selected by itself and late accepts all
the edges in the optimal solution on the path.

After applying late operations on all augmenting paths with at most 2L + 1
edges, every remaining augmenting path has length at least 2L+3, and the ratio
of the OPT solution value to the L-Greedy solution value is OPT(P)

L-Greedy(P) ≤ L+2
L+1 on

the component P . Since the Maximum Cardinality Matching problem can
be solved in O(n2.5) time, the following theorem holds by selecting L = 	 1

t−1
−1.

Theorem 4. The L-Greedy algorithm returns a valid matching with competitive
ratio L+2

L+1 in O(n3.5) time, where n is the number of vertices in the final graph.

146 A. H.-H. Liu and J. Toole-Charignon

Proof (Ideas). After applying the late operations on all the augmenting path
with at most 2L + 1 edges, every remaining augmenting path P has length at
least 2L + 3 = (L + 2) + (L + 1), and the ratio of the OPT size to the L-Greedy
size OPT(P)

L-Greedy(P) ≤ L+2
L+1 on the component P . By Observation 1, the ratio of an

optimal solution to that of L-Greedy is at most L+2
L+1 .

When an edge/vertex arrives, the algorithm checks if there is an augmenting
path. By the well-known Hopcroft-Karp algorithm [17], it can be done in O(n ·
n2.5) = O(n3.5)-time, where n is the number of vertices in the final graph. ��

Since it was shown that to achieve 1.5-competitiveness, every vertex incurs
at most 2 recourse, we consider a target competitive ratio 1 < t < 2 and have
the following theorem. Note that 1 < t∗ < 2, thus 0 < t∗−1

3−t∗ < 1.

Theorem 5. For the Maximum Cardinality Matching problem in the ver-
tex/edge-arrival model, the L-Greedy algorithm is t-competitive for any 1 < t < 2
and incurs at most (2−t∗)

(t∗−1)(3−t∗) + t∗−1
3−t∗ amortized recourse, where t∗ is the largest

number such that t∗ ≤ t and t∗ = 1 + 1
j for some integer j.

Proof (Ideas). Consider the connected components generated by the union of
edges chosen by L-Greedy or by OPT. By Observation 1, we prove this theorem
by showing that for any component in the graph, the total recourse incurred at
this component divided by its size is at most (2−t∗)

(t∗−1)(3−t∗) + t∗−1
3−t∗ .

By selecting L = 	 2−t
t−1
, the path eliminations only happen at odd-size com-

ponents with length from 3 to 2 · (1
t−1
 − 1) + 1 (note that 	 1

t−1
 ≥ 2 since
1 < t < 2). Moreover, for such a (2k + 1)-edge augmenting path, the total

recourse incurred by the 2k +1 elements in the path is at most 1+
∑� 1

t−1 �−1

k=1 2k.
Hence, the amount of amortized recourse incurred by this component is at most
(� 1

t−1 �−1)·� 1
t−1 �+1

2� 1
t−1 �−1

. Thus, the theorem is proven if t = 1 + 1
j for some integer j.

For the case in which there is no integer j such that t = 1 + 1
j , the proof can

be adapted by rounding down t to the largest t∗ ≤ t such that t∗ = 1+ 1
j for some

integer j. By eliminating all augmenting paths that have length at most 2
t∗−1 −1,

the amount of incurred amortized recourse is at most 2−t∗
(t∗−1)(3−t∗) + t∗−1

3−t∗ , and
the algorithm attains a competitive ratio of t∗ ≤ t. ��
Theorem 6. No deterministic t-competitive online algorithm can incur amor-
tized recourse less than (2−t∗)

(t∗−1)(3−t∗) in the worst case.

Proof (Ideas). Given that n+2
n+1 ≤ t < n+1

n for some integer n ≥ 1, consider the
adversarial instance that releases a sequence of 2n + 1 edges that form a path.
More specifically, given the current instance which is an �-path, the adversary
releases a new edge that is incident to one of the endpoints of the �-path and
forms a (� + 1)-path. For any 1 ≤ k ≤ n, the following invariants hold for any
t-competitive algorithm:

The Power of Amortized Recourse for Online Graph Problems 147

(I1) For a path with length 2k+1, a t-competitive algorithm has to accept k+1
edges.

(I2) For a path with length 2k, a t-competitive algorithm has to accept k edges.
(I3) When an instance is increased from a 2(k − 1) + 1 path to a 2k + 1 path,

a t-competitive algorithm incurs at least 2k amount of recourse.

Given the invariants I1, I2, and I3, the (2n + 1)-length path instance incurs
recourse with total amount at least

∑n
k=1(2k) = n · (n + 1). Therefore, any t-

competitive algorithm incurs at least n·(n+1)
2n+1 amortized recourse for this instance.

Let t∗ = n+2
n+1 ≤ t. It follows that n = 2−t∗

t∗−1 . Therefore, the amortized recourse is

at least n·(n+1)
2n+1 = (2−t∗)

(t∗−1)(3−t∗) . ��

5 Minimum Vertex Cover

In this section, we propose a special version of the TaSt algorithm, Duo-Halve,
that attains a competitive ratio of 2 − 2

OPT
for the Minimum Vertex Cover

problem with optimal vertex cover size OPT in polynomial time.
The Duo-Halve algorithm uses an optimal solution as the yardstick with

t = 2− 2
OPT

. However, the computation of the optimal solution of Vertex Cover
is very expensive. Thus, we maintain a maximal matching greedily (as the well-
known 2-approximation algorithm for Vertex Cover) on the current input
graph and only select vertices that are saturated by the matching. Intuitively, if
the Duo-Halve algorithm rejects two of these saturated vertices, the competitive
ratio is at most 2 − 2

OPT
. We show that either we can remove up to 2 carefully

chosen vertices from the matching-based solution without violating its feasibility,
or the optimal solution contains at least one vertex more than the number of
edges in the maximal matching (Lemma 3 and Theorem 7). In either case, the
constructed solution is (2− 2

OPT
)-competitive. We can refine the choice of vertices

to be removed so that they are incident to one of the two last edges added to the
matching. This restriction allows us to show that maintaining this constructed
solution needs only a constant amount of amortized recourse, and polynomial
time (Lemma 2).

In the following discussion, we use some terminology. Let ME1 and ME2 be
the last and second-to-last edges added to the matching respectively. Note that
ME1 and ME2 change over the course of the input sequence as more vertices are
revealed and edges are added to the matching. Also, let VM(X) be the vertices
saturated by the maximal matching M(X). The DH algorithm partitions the
vertices into three groups: Group-1: the endpoints of ME1 or ME2, Group-2:
the vertices in VM but not in Group-1, and Group-3: the vertices in V \VM .

Duo-Halve Algorithm (DH). When a new vertex v arrives, if an edge (p, v) is
added to M(X), then it introduces a new ME1 (namely (p, v)). The algorithm
first accepts all Group-2 vertices that are adjacent to v. Then, the algorithm
decides the assignment of ME1 and ME2 and minimizes the number of accepted
endpoints of ME1 and ME2. If there is a tie, we apply the one that accepts fewer
endpoints in ME1 and/or incurs less recourse. (See Algorithm 2).

148 A. H.-H. Liu and J. Toole-Charignon

Algorithm 2. Duo-Halve algorithm (DH) for Minimum Vertex Cover Problem
ME1 ← ∅, ME2 ← ∅, VM ← ∅

while new vertex v arrives do
if there is a vertex p ∈ N(v) ∪ (V \VM) then

ME2 ← ME1
ME1 ← (p, v) � (p, v) is a new matched edge. If there is more than one p,

choose one arbitrarily.
Add p and v into VM

LateAccept all rejected vertices in (VM\{vertices in ME1 or ME2}) ∩ N(v)
HalveBoth(ME1, ME2)

else
LateAccept all rejected vertices in VM ∩ N(v)
HalveBoth(ME1, ME2)

end if
end while

Function HalveBoth(matched edge ME1, matched edge ME2)
Among accept/reject configurations of ME1 and ME2 that yield a valid vertex cover,
return one that maximizes the number of half edges among ME1 and ME2 with the
minimum number of late operations. If there is a tie, prioritize ME1 (see Fig. 1 for
details).
end Function

The DH algorithm returns a feasible solution in O(n3) time, where n is the
number of vertices in the graph. Intuitively, the algorithm maintains a valid
solution as it greedily covers edges using vertices in the maximal matching, with
the exception of ME1 and ME2, where it carefully ensures that a feasible config-
uration is chosen. Furthermore, the most computationally-expensive component
of the DH algorithm, which checks the validity of a constant number of configu-
rations by looking at the neighborhoods of ME1 and ME2, runs in O(n2) time
for each new element.

Lemma 2. The DH algorithm always returns a valid vertex cover in O(n3) time,
where n is the number of vertices in the graph.

We first show that if DH fails to produce a solution where it accepts only one
vertex of ME1, then OPT ≥ |M | + 1. The intuition is that if DH has to accept
both endpoints of ME1, there must be at least one Group-3 vertex in each of
the endpoints’ neighborhoods. Therefore, the optimal solution has to cover the
corresponding edges with at least two vertices.

Lemma 3. In the assignment of DH, if both endpoints of ME1 are selected, then
the optimal solution must contain at least two vertices in ME1 ∪ (V \VM), and
DH
OPT

≤ 2 − 2
OPT

.

Theorem 7. The DH algorithm is (2 − 2
OPT

)-competitive.

The Power of Amortized Recourse for Online Graph Problems 149

YES

Given v accepted,
is ME2 halvable?

vertex v arrives Is there a new ME1 = (p, v)?

NO

Given the current ME1,
is ME2 halvable?

YESHalve ME2
accept v

NO
Given p late accepted,

is ME2 halvable?

YES

Halve ME2
late accept p

YES
Halve ME2

Given ME1 flipped,
is ME2 halvable?

Halve ME2
flip ME1

NO

YES

Given full ME2,
is ME1 halvable?

NO

NO

Full ME2
halve ME1

Full ME1
ME2 unchanged

YES

NO

Fig. 1. An illustration of the flow of HalveBoth (ME1, ME2).

Proof (Ideas). We define an edge as being half if exactly one of its endpoints
is accepted by DH, and full if both of its endpoints are accepted by DH. In any
possible solution provided by DH, there are three states based on the configuration
of ME1 and ME2: 1) both ME1 and ME2 are half, 2) ME1 is half and ME2 is
full, and 3) ME1 is full. In state 1, we can directly show that the bound holds
since DH ≤ 2|M | − 2. The bound holds for state 3 by Lemma 3.

State 2 requires more involved analysis. If an endpoint of ME2 has a rejected
Group-2 neighbor, then DH rejects at least two vertices in VM (this Group-
2 neighbor and 1 ME1 vertex) and DH ≤ 2|M | − 2. Otherwise, if at least one
endpoint of ME2 has no Group-3 neighbor, then we can show that there is no
solution based on the maximal matching containing only 2 Group-1 vertices.
This means that OPT must contain either a Group-3 vertex or 3 Group-1
vertices, and thus OPT ≥ |M |+1. Finally, if each endpoint of ME2 has a Group-
3 neighbor, then OPT must either select a Group-3 vertex or both endpoints of
ME2, and OPT ≥ |M | + 1. ��

For a single newly-revealed vertex, the amount of recourse incurred can be
up to O(n). Even if we restrict our consideration to ME1 and ME2, a single
new vertex can incur recourse at most 4. However, this cannot happen at every
input. We use a potential function to show that the amortized recourse incurred
by DH is at most 3.33.

Theorem 8. The amortized recourse incurred by DH is at most 10
3 .

Proof (Ideas). We prove the theorem by using a potential function. To this end,
we define an edge (u, v) as being free if there exist feasible assignments both by
either accepting u or by accepting v. Also, we define a matched edge with only
one endpoint selected as being expired if it is neither ME1 nor ME2. Finally, we
define A as the set of vertices accepted by DH. Using these terms, we define the
potential function Φ as

Φ := |{(u, v)|(u, v) expired}| +
1
3
|A ∩ (ME1 ∪ ME2)| +

2
3

· 1[ME2 is free]

150 A. H.-H. Liu and J. Toole-Charignon

Furthermore, at any given moment in the input sequence where the matching
constructed by DH contains at least 2 edges, the status of ME1 and ME2 is
characterized by one of 6 states according to their possible combinations of
selection statuses of their endpoints. We also differentiate between the two half
possibilities for ME1, since the newly-revealed vertex in ME1 can be accepted
without incurring a late operation when there is a new ME1.

We show that, for any possible state transition triggered by a newly-revealed
vertex, the number of incurred late operations LO added to the change in poten-
tial ΔΦ is bounded above by 10

3 . Note that, for any newly-revealed vertex v, v
may be adjacent to k ≥ 0 rejected vertices that are matched by some expired
edge. This incurs k late operations, but also decreases Φ by k, so this may be
ignored when computing LO + ΔΦ. Since Φ0 = 0 and Φi ≥ 0, this allows us to
conclude the statement of our theorem. ��

Moreover, we can show a lower bound by constructing a family of instances
that alternates between incurring a late accept on a Group-2 vertex, and 4 late
operations on ME1 and ME2. This is illustrated in Fig. 2.

Lemma 4. For any ε > 0, there exists an instance such that DH incurs amortized
recourse strictly greater than 5

2 − ε.

Fig. 2. Adversarial instance for Vertex Cover such that DH incurs asymptotic amor-
tized recourse 5

2
. Each arrow’s number denotes the number of late operations incurred

by the next vertex’s reveal. The dotted ovals highlight the repeating structure.

Finally, we show that the analysis in Theorem 7 is tight for a class of online
algorithms where its solution only contains vertices saturated by the matching
maintained throughout the process in an incremental manner. In other words,
no online algorithm in this class achieves a lower competitive ratio, no matter
how much amortized recourse it uses.

Definition 4. An algorithm for vertex cover is incremental matching-based if it
maintains a maximal matching throughout the process in an incremental manner,
and its solution only contains vertices saturated by the matching.

Theorem 9. No deterministic incremental matching-based algorithm achieves
a competitive ratio smaller than 2 − 2

OPT
.

The Power of Amortized Recourse for Online Graph Problems 151

Proof. Consider the instance which first reveals k disconnected edges via their
endpoints. For any incremental matching-based algorithm, each of these k edges
will be added to the matching, and at least one vertex from each pair will
be accepted. Then, the instance reveals a final vertex that is adjacent to all
previously-revealed vertices (See Fig. 3). The incremental matching-based algo-
rithm will not accept this vertex, as it is not matched, but must accept all other
vertices for a vertex cover of size 2k. However, the optimal solution consists of
the last revealed vertex, and one endpoint from each of the k edges. Therefore, no
incremental matching-based algorithm can achieve a competitive ratio smaller
than 2k

k+1 = 2 − 2
OPT

. ��

Fig. 3. Adversarial instance for Vertex Cover such that any incremental matching-
based algorithm is exactly (2 − 2

OPT
)-competitive. Vertices are labeled by their release

order. Any such algorithm must accept n − 1 vertices, whereas the optimal solution
contains n−1

2
+ 1 vertices.

6 Concluding Remarks

In this paper, we propose a general Target-and-Switch algorithm for online prob-
lems that allow recourse. We prove that for any monotone-sum graph problem,
the algorithm attains a competitive ratio of t > 1 while incurring wmax ·(1+ 1

t−1)
amortized recourse. Many interesting problems remain open. A major future
direction is extending the analysis to non-monotone problems such as Domi-
nating Sets or monotone-max problems such as Coloring.

Acknowledgement. We wish to thank the anonymous referees for their comments
and suggestions on a previous version of this paper. In particular, we thank them for
helping us complete the monotone problem definition.

References

1. Albers, S., Schraink, S.: Tight bounds for online coloring of basic graph classes.
In: Pruhs, K., Sohler, C. (eds.) 25th Annual European Symposium on Algorithms,
ESA 2017, 4–6 September 2017, Vienna, Austria. LIPIcs, vol. 87, pp. 7:1–7:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.
4230/LIPIcs.ESA.2017.7

2. Angelopoulos, S., Dürr, C., Jin, S.: Online maximum matching with recourse.
J. Comb. Optim. 40(4), 974–1007 (2020). https://doi.org/10.1007/s10878-020-
00641-w

https://doi.org/10.4230/LIPIcs.ESA.2017.7
https://doi.org/10.4230/LIPIcs.ESA.2017.7
https://doi.org/10.1007/s10878-020-00641-w
https://doi.org/10.1007/s10878-020-00641-w

152 A. H.-H. Liu and J. Toole-Charignon

3. Avitabile, T., Mathieu, C., Parkinson, L.H.: Online constrained optimization with
recourse. Inf. Process. Lett. 113(3), 81–86 (2013). https://doi.org/10.1016/j.ipl.
2012.09.011

4. Azar, Y., Panigrahi, D., Touitou, N.: Online graph algorithms with predictions.
In: Naor, J.S., Buchbinder, N. (eds.) Proceedings of the 2022 ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2022, Virtual Conference, Alexandria, VA,
USA, 9–12 January 2022, pp. 35–66. SIAM (2022). https://doi.org/10.1137/1.
9781611977073.3

5. Azar, Y., Touitou, N.: Beyond tree embeddings - a deterministic framework for net-
work design with deadlines or delay. In: Irani [18], pp. 1368–1379 (2020). https://
doi.org/10.1109/FOCS46700.2020.00129

6. Bernstein, A., Holm, J., Rotenberg, E.: Online bipartite matching with amortized
O(log 2 n) replacements. J. ACM 66(5), 37:1–37:23 (2019). https://doi.org/10.
1145/3344999

7. Bienkowski, M., Kraska, A., Liu, H.-H., Schmidt, P.: A primal-dual online deter-
ministic algorithm for matching with delays. In: Epstein, L., Erlebach, T. (eds.)
WAOA 2018. LNCS, vol. 11312, pp. 51–68. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-04693-4 4

8. Boppana, R.B., Halldórsson, M.M.: Approximating maximum independent sets
by excluding subgraphs. BIT 32(2), 180–196 (1992). https://doi.org/10.1007/
BF01994876

9. Bosek, B., Disser, Y., Feldmann, A.E., Pawlewicz, J., Zych-Pawlewicz, A.: Recolor-
ing interval graphs with limited recourse budget. In: Albers, S. (ed.) 17th Scandi-
navian Symposium and Workshops on Algorithm Theory, SWAT 2020, 22–24 June
2020, Tórshavn, Faroe Islands. LIPIcs, vol. 162, pp. 17:1–17:23. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.SWAT.
2020.17

10. Boyar, J., Favrholdt, L.M., Kotrbćık, M., Larsen, K.S.: Relaxing the irrevocabil-
ity requirement for online graph algorithms. Algorithmica 84, 1916–1951 (2022).
https://doi.org/10.1007/s00453-022-00944-w

11. Cygan, M., Czumaj, A., Mucha, M., Sankowski, P.: Online facility location with
deletions. In: Azar, Y., Bast, H., Herman, G. (eds.) 26th Annual European Sym-
posium on Algorithms, ESA 2018, 20–22 August 2018, Helsinki, Finland. LIPIcs,
vol. 112, pp. 21:1–21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018).
https://doi.org/10.4230/LIPIcs.ESA.2018.21

12. Gu, A., Gupta, A., Kumar, A.: The power of deferral: Maintaining a constant-
competitive steiner tree online. SIAM J. Comput. 45(1), 1–28 (2016). https://doi.
org/10.1137/140955276

13. Gupta, A., Guruganesh, G., Kumar, A., Wajc, D.: Fully-dynamic bin packing with
limited repacking. CoRR abs/1711.02078 (2017). http://arxiv.org/abs/1711.02078

14. Gupta, A., Levin, R.: Fully-dynamic submodular cover with bounded recourse. In:
Irani [18], pp. 1147–1157 (2020). https://doi.org/10.1109/FOCS46700.2020.00110

15. Halperin, E.: Improved approximation algorithms for the vertex cover problem in
graphs and hypergraphs. SIAM J. Comput. 31(5), 1608–1623 (2002). https://doi.
org/10.1137/S0097539700381097

16. Harutyunyan, H.A., Pankratov, D., Racicot, J.: Online domination: the value
of getting to know all your neighbors. In: Bonchi, F., Puglisi, S.J. (eds.) 46th
International Symposium on Mathematical Foundations of Computer Science,
MFCS 2021, 23–27 August 2021, Tallinn, Estonia. LIPIcs, vol. 202, pp. 57:1–
57:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/
10.4230/LIPIcs.MFCS.2021.57

https://doi.org/10.1016/j.ipl.2012.09.011
https://doi.org/10.1016/j.ipl.2012.09.011
https://doi.org/10.1137/1.9781611977073.3
https://doi.org/10.1137/1.9781611977073.3
https://doi.org/10.1109/FOCS46700.2020.00129
https://doi.org/10.1109/FOCS46700.2020.00129
https://doi.org/10.1145/3344999
https://doi.org/10.1145/3344999
https://doi.org/10.1007/978-3-030-04693-4_4
https://doi.org/10.1007/978-3-030-04693-4_4
https://doi.org/10.1007/BF01994876
https://doi.org/10.1007/BF01994876
https://doi.org/10.4230/LIPIcs.SWAT.2020.17
https://doi.org/10.4230/LIPIcs.SWAT.2020.17
https://doi.org/10.1007/s00453-022-00944-w
https://doi.org/10.4230/LIPIcs.ESA.2018.21
https://doi.org/10.1137/140955276
https://doi.org/10.1137/140955276
http://arxiv.org/abs/1711.02078
https://doi.org/10.1109/FOCS46700.2020.00110
https://doi.org/10.1137/S0097539700381097
https://doi.org/10.1137/S0097539700381097
https://doi.org/10.4230/LIPIcs.MFCS.2021.57
https://doi.org/10.4230/LIPIcs.MFCS.2021.57

The Power of Amortized Recourse for Online Graph Problems 153

17. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2(4), 225–231 (1973). https://doi.org/10.1137/0202019

18. Irani, S. (ed.): 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, 16–19 November 2020. IEEE (2020). https://doi.
org/10.1109/FOCS46700.2020

19. Karakostas, G.: A better approximation ratio for the vertex cover problem.
ACM Trans. Algorithms 5(4), 41:1–41:8 (2009). https://doi.org/10.1145/1597036.
1597045

20. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon.
J. Comput. Syst. Sci. 74(3), 335–349 (2008). https://doi.org/10.1016/j.jcss.2007.
06.019

21. Megow, N., Nölke, L.: Online minimum cost matching with recourse on the line.
In: Byrka, J., Meka, R. (eds.) Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques, APPROX/RANDOM 2020, 17–
19 August 2020, Virtual Conference. LIPIcs, vol. 176, pp. 37:1–37:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/
LIPIcs.APPROX/RANDOM.2020.37

22. Megow, N., Skutella, M., Verschae, J., Wiese, A.: The power of recourse for online
MST and TSP. SIAM J. Comput. 45(3), 859–880 (2016). https://doi.org/10.1137/
130917703

23. Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm
for the vertex cover problem. Acta Inform. 22(1), 115–123 (1985). https://doi.org/
10.1007/BF00290149

24. Wang, Y., Wong, S.C.: Two-sided online bipartite matching and vertex cover: beat-
ing the greedy algorithm. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speck-
mann, B. (eds.) ICALP 2015, Part I. LNCS, vol. 9134, pp. 1070–1081. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-7 87

https://doi.org/10.1137/0202019
https://doi.org/10.1109/FOCS46700.2020
https://doi.org/10.1109/FOCS46700.2020
https://doi.org/10.1145/1597036.1597045
https://doi.org/10.1145/1597036.1597045
https://doi.org/10.1016/j.jcss.2007.06.019
https://doi.org/10.1016/j.jcss.2007.06.019
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.37
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.37
https://doi.org/10.1137/130917703
https://doi.org/10.1137/130917703
https://doi.org/10.1007/BF00290149
https://doi.org/10.1007/BF00290149
https://doi.org/10.1007/978-3-662-47672-7_87

An Improved Algorithm for Open Online
Dial-a-Ride

Júlia Baligács , Yann Disser , Nils Mosis , and David Weckbecker(B)

TU Darmstadt, Darmstadt, Germany
{baligacs,disser,mosis,weckbecker}@mathematik.tu-darmstadt.de

Abstract. We consider the open online dial-a-ride problem, where
transportation requests appear online in a metric space and need to be
served by a single server. The objective is to minimize the completion
time until all requests have been served. We present a new, parameter-
ized algorithm for this problem and prove that it attains a competitive
ratio of 1 + ϕ ≈ 2.618 for some choice of its parameter, where ϕ is the
golden ratio. This improves the best known bounds for open online dial-
a-ride both for general metric spaces as well as for the real line. We also
give a lower bound of 2.457 for the competitive ratio of our algorithm
for any parameter choice.

Keywords: Online optimization · Dial-a-ride · Competitive analysis

1 Introduction

In the online dial-a-ride problem, transportation requests appear over time in a
metric space (M,d) and need to be transported by a single server. Each request
is of the form r = (a, b; t), appears at its starting position a ∈ M at its release
time t ≥ 0, and needs to be transported to its destination b ∈ M . The server
starts at a distinguished point O ∈ M , called the origin, can move at unit speed,
and has a capacity c ∈ N∪{∞} that bounds the number of requests it is able to
carry simultaneously. Importantly, the server only learns about request r when
it appears at time t during the execution of the server’s algorithm. Moreover,
the total number of requests is initially unknown and the server cannot tell upon
arrival of a request whether it is the last one.1 Requests do not have to be served
in the same order in which they appear.

The objective of the open dial-a-ride problem is to minimize the time until
all requests have been served, by loading each request r = (a, b; t) at point a no
earlier than time t, transporting it to point b and unloading it there. We consider
the non-preemptive variant of the problem, meaning that requests may only be

1 If the server can distinguish the last request, it can start an optimal schedule once
all requests are released, achieving a completion time of at most twice the optimum.

Supported by DFG grant DI 2041/2.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Chalermsook and B. Laekhanukit (Eds.): WAOA 2022, LNCS 13538, pp. 154–171, 2022.
https://doi.org/10.1007/978-3-031-18367-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18367-6_8&domain=pdf
http://orcid.org/0000-0003-2654-149X
http://orcid.org/0000-0002-2085-0454
http://orcid.org/0000-0002-0692-0647
http://orcid.org/0000-0003-3381-058X
https://doi.org/10.1007/978-3-031-18367-6_8

An Improved Algorithm for Open Online Dial-a-Ride 155

unloaded at their respective destinations. Note that, in contrast to the closed
variant of the problem, we do not require the server to return to the origin after
serving the last request.

As usual, we measure the quality of a (deterministic) online algorithm in
terms of competitive analysis. That is, we compare the completion time Alg(σ)
of the algorithm to an offline optimum completion time Opt(σ) over all request
sequences σ. Here, the offline optimum is given by the best possible comple-
tion time that can be achieved if all requests are known (but not released)
from the start. The (strict) competitive ratio of the algorithm is given by
ρ := supσ Alg(σ)/Opt(σ).2 Note that, in particular, the running time of an
algorithm does not play a role in its competitive analysis.

Our Results. We present a parameterized online algorithm Lazy(α) and show
that it improves on the best known upper bound for open online dial-a-ride for
α = ϕ, where ϕ = 1+

√
5

2 denotes the golden ratio. We also show a lower bound
on potential improvements for other parameter choices. More precisely, we show
the following.

Theorem 1. Lazy(ϕ) has competitive ratio 1 + ϕ ≈ 2.618 for the open online
dial-a-ride problem on general metric spaces for any server capacity c ∈ N∪{∞}.
For every α ≥ 1 and any c ∈ N ∪ {∞}, Lazy(α) has competitive ratio at least
max{1 + α, 2 + 2/(3α)}, even if the metric space is the real line.

In particular, we obtain a lower bound on the competitive ratio of our algo-
rithm, independent of α.

Corollary 1. For every α ≥ 0, Lazy(α) has competitive ratio at least
3/2 +

√
11/12 ≈ 2.457 for open online dial-a-ride on the line.

Our lower bound also narrows the range of parameter choices that could
allow improved competitive ratios.

Corollary 2. For α /∈ (2ϕ/3, ϕ) ≈ (1.078, 1.618), Lazy(α) has competitive
ratio at least 1 + ϕ for open online dial-a-ride on the line.

Our upper bound improves the best known upper bound of 2.70 for general
metric spaces [8], and even the best known upper bound of 2.67 for the real
line [10]. Figure 1 gives an overview over the previous upper bounds for open
online dial-a-ride. Note that, in contrast to previous results, Lazy(α) is not a so-
called schedule-based algorithm as defined in [8], because it interrupts schedules.

We note that an upper bound of ϕ + 1 ≈ 2.618 was already claimed in [26]
for the Wait-or-Ignore algorithm, but the proof in [26] is inconclusive. While the
general idea of our algorithm is similar to Wait-or-Ignore, our implementation
is more involved and avoids issues in the analysis that are not being addressed

2 We adopt a strict definition of the competitive ratio that requires a bounded ratio
for all request sequences, i.e., we do not allow an additive constant.

156 J. Baligács et al.

in [26]. In particular, Wait-or-Ignore only waits at the origin, while our algorithm
crucially also waits at other locations.

Related Work. As listed in Fig. 1, the best previously known upper bound for
open online dial-a-ride of 2.70 was shown by Birx [8] and a slightly better bound
of 2.67 for the line was shown by Birx et al. [10]. In this paper, we improve both
bounds to 1+ϕ ≈ 2.618. A better upper bound of 1+

√
2 ≈ 2.41 is known for the

preemptive variant of the problem, due to Bjelde et al. [11]. The TSP problem
is an important special case of dial-a-ride, where a = b for every request (a, b; t),
i.e., requests just need to be visited. Bonifaci and Stougie gave an upper bound
for open online TSP on general metric spaces of 2.41. Bjelde et al. [11] were able
to show a tight bound of 2.04 for open online TSP on the line. Birx et al. [10]
showed that open online dial-a-ride is strictly more difficult than open online
TSP by providing a slightly larger lower bound of 2.05. Weaker lower bounds
for the half-line were given by Lippmann [26].

Fig. 1. Overview of the state-of-the-art for the open online dial-a-ride problem. Bounds
in parentheses were shown for the real line. Note that lower bounds on the real line carry
over to general metric spaces and the converse is true for upper bounds. In particular,
our upper bound also holds on the line.

The competitive analysis of the closed online dial-a-ride problem on general
metric spaces has proven to be structurally much simpler and conclusive results
are known: The best possible competitive ratio of 2 is achieved by the conceptu-
ally clean Smartstart algorithm, as shown by Ascheuer et al. [2] and Feuerstein
and Stougie [14]. Ausiello et al. [4] gave a matching lower bound already for TSP.
The situation is more involved on the line. Bjelde et al. [11] gave a sophisticated
algorithm for closed online TSP on the line that tightly matches the lower bound
of 1.64 shown by Ausiello et al. [4]. Birx [8] separated closed online dial-a-ride
on the line by giving a lower bound of 1.76. No better upper bound than 2 is
known in this setting, not even for preemptive algorithms. Blom et at. [12] gave
a tight bound of 1.5 for the half-line, and the best known lower bound of 1.71
for closed dial-a-ride on the half-line is due to Ascheuer et al. [2].

Clearly, most variants of the online dial-a-ride problem have resisted tight
competitive analysis for many years. As a remedy, several authors have resorted
to considering restricted classes of algorithms, restricted adversary models, or
resource augmentation. In that vein, Blom et al. [12] considered “zealous” (or
“diligent”) algorithms that do not stay idle if there are unserved requests, and
Birx [8] derived stronger lower bounds for “schedule-based” algorithms that sub-
divide the execution into schedules that may not be interrupted. Examples of

An Improved Algorithm for Open Online Dial-a-Ride 157

restricting the adversary include “non-abusive” or “fair” models introduced by
Krumke et al. [22] and Blom et al. [12], that force the optimum solution to stay
in the convex hull of all released requests. In the same spirit, Hauptmeier et
al. [16] adopted a “reasonable load” model, which requires that the length of an
optimum schedule for serving all requests revealed up to time t is bounded by
a function of t. In terms of resource augmentation, Allulli et al. [1] and Ausiello
et al. [5] considered a model with “lookahead”, where the algorithm learns about
requests before they are released. In contrast, Lippmann et al. [25] considered a
restricted information model where the server learns the destination of a request
only upon loading it. Bonifaci and Stougie [13] and Jaillet and Wagner [19] con-
sidered resource augmentation regarding the number of servers, their speeds,
and their capacities.

While we concentrate on minimizing completion time, other objectives have
been studied: Krumke [21] presented first results for randomized algorithms min-
imizing expected completion time, Krumke et al. [24] and Bienkowski et al. [6,7]
minimized the sum of completion times, Krumke et al. [22,23] and Hauptmeier
et al. [16] minimized the flow time, and Yi and Tian [27] maximized the num-
ber of served requests (with deadlines). Regarding other metric spaces, Jawgal
et al. [20] considered online TSP on a circle. Various generalizations of online
dial-a-ride have been investigated: Ausiello et al. [3] introduced the online quota
TSP, where only a minimum weighted fraction of requests need to be served,
and, similarly, Jaillet and Lu [17,18] adopted a model where requests can be
rejected for a penalty in the objective. Jaillet and Wagner [19] and Hauptmeier
et al. [15] allowed precedence constraints between requests.

2 Notation and Definition of the Algorithm

Let σ = (r1, . . . , rn) be a sequence of requests ri = (ai, bi; ti) with release times
0 < t1 < · · · < tn. Note that we do not allow multiple requests to appear at
the same time or a request to appear at time 0 but this is not a restriction as
the release times can differ by arbitrarily small values. We let Opt(t) denote
the completion time of the offline optimum over all requests released not later
than t. A schedule is a sequence of actions of the server, specifying when requests
are collected and unloaded, how the server moves, and, in particular, when the
server stays stationary. Let Opt[t] denote an optimal schedule with completion
time Opt(t). We say that a server visits point p ∈ M at time t ≥ 0 if the server
is in position p at time t.

The rough idea of our algorithm is to wait until we gather several requests
and then start a schedule serving them. If a new request arrives during the
execution of a schedule, it would be desirable to include it in the server’s plan.
Therefore, we check whether we can “reset” the server’s state in a reasonable
time, i.e., deliver all currently loaded requests and return to the origin, so that
we can compute a new schedule. If this is not possible, we keep following the
current schedule and consider the new requests later.

We introduce some notation to capture this more formally. Let R be a set of
requests and x ∈ M . Then, the schedule S(R, x) is the shortest schedule starting

158 J. Baligács et al.

from point x and serving all requests in R. Note that this schedule can ignore
the release times of the requests as we will only compute it after all requests in
R are released. As it is not beneficial to wait at some point during the execution
of a schedule, the walked distance in S(R, x) is the same as the time needed to
complete it. We denote its length by |S(R, x)|.

Now, we can describe our algorithm. The factor α ≥ 1 will be a measure
of how long we wait before starting a schedule. A precise description of the
algorithm is given below (cf. Algorithm 1). In short, whenever a new request
r = (a, b; t) arrives, we determine whether it is possible to serve all loaded
requests and return to the origin in time α ·Opt(t). If this is possible, we do so.
In this case, we say that the schedule was interrupted. Otherwise, we ignore the
request and consider it in the next schedule. Before starting a new schedule, we
wait at least until time α · Opt(t).

In the following, the algorithm Lazy(α) with waiting parameter α ≥ 1 is
described. The first part of the algorithm is invoked whenever a new request
r = (a, b; t) is released, and the second part of the algorithm is invoked whenever
the algorithm becomes idle, i.e., when the server has finished waiting or finished
a schedule. We denote by t the current time, by Rt the set of unserved requests at
time t and by pt the position of the server at time t. There are three commands
that can be executed, namely deliver_and_return, wait_until(t′), and
follow_schedule(S). Whenever one of these commands is invoked, the server
aborts what it is currently doing and executes the new command. The com-
mand deliver_and_return instructs the server to deliver all loaded requests
and return to the origin in an optimal way. The command wait_until(t′)
orders the server to remain at its position until time t′ and the command
follow_schedule(S) tells the server to execute schedule S. Once the server
completes the execution of a command, it becomes idle.

Algorithm 1: Lazy(α)
initialize: i ← 0

upon receiving request r = (a, b; t):
if server can serve loaded requests and return to O until time α · Opt(t) then

execute deliver_and_return // interrupt S(i)

upon becoming idle:
if t < α · Opt(t) then

execute wait_until(α · Opt(t))
else if Rt �= ∅ then

i ← i + 1, R(i) ← Rt, t(i) ← t, p(i) ← pt

S(i) ← S(R(i), p(i))
execute follow_schedule(S(i))

An Improved Algorithm for Open Online Dial-a-Ride 159

3 Analysis of Lazy

In this section, we analyze Lazy(α) and show that Lazy(α) is 1+α competitive
for α ≥ ϕ = 1+

√
5

2 . This implies in particular that Lazy(ϕ) is (1+ϕ)-competitive,
i.e., that the first part of Theorem 1 holds.

Theorem 2. For α ≥ ϕ ≈ 1.618, Lazy(α) is (1 + α)-competitive for the open
dial-a-ride problem on general metric spaces for any server capacity c ∈ N∪ {∞}.
Proof. For a given request sequence (r1, . . . , rn), we denote the number of sched-
ules started by Lazy(α) by k ≤ n. Let S(i), t(i), p(i), and R(i) be as defined in
the algorithm, i.e., S(i) is the i-th schedule started by Lazy(α), t(i) is its start-
ing time, p(i) its starting position, and R(i) is the set of requests served by S(i).
Observe that some schedules might be interrupted so that R(1), . . . , R(k) are not
necessarily disjoint. Also observe that we have p1 = O and, for i > 1, p(i) is
either the ending position of S(i−1) or O if S(i−1) was interrupted.

We show by induction on i that, for all i ∈ {1, . . . , k},

a) |S(i)| ≤ Opt(t(i)), and
b) t(i) + |S(i)| ≤ (1 + α) · Opt(t(i)).

Note that this completes the proof since the last schedule is completed at time
t(k) + |S(k)| and since Opt(t(k)) is the completion time of the offline optimum
over all requests.

Before starting the induction, let us make some observations. Since the server
does not start a schedule at time t if t < α · Opt(t), we have

t(i) ≥ α · Opt(t(i)) (1)

for all i ∈ {1, . . . , k}. Further, for every request r = (a, b; t) ∈ R(i+1)\R(i),
we have t > t(i) because R(i) contains all unserved requests released until time
t(i). Moreover, R(i+1)\R(i) 	= ∅ because otherwise S(i) is not interrupted and we
have R(i+1) = ∅, contradicting that the algorithm starts S(i+1). Therefore, for
all i ∈ {1, . . . , k − 1},

Opt(t(i+1)) > t(i)
(1)
≥ α · Opt(t(i)). (2)

Now, let us start the induction.

Base Case: a) Since Opt[t(1)] is a schedule serving all requests in R(1) starting
from O, possibly with additional waiting times, we have

|S(1)| = |S(R(1), p(1))| = |S(R(1), O)| ≤ Opt(t(1)).

b) Consider the time t(1) at which schedule S(1) = S(R(1), O) is started, and
let t′ ≤ t(1) denote the largest release time of a request in R(1). In particular, no
requests are released in the time period (t′, t(1)] and thus Opt(t′) = Opt(t(1)).

160 J. Baligács et al.

When the request at time t′ is released, the server is in O so that the com-
mand deliver_and_return is completed immediately. Therefore, the server
becomes idle at time t′ and the waiting time is set to α ·Opt(t′) = α ·Opt(t(1)).
Observe that α · Opt(t′) > Opt(t′) ≥ t′. The server becomes idle again and
starts schedule S(1) precisely at time t(1) = α · Opt(t(1)). We obtain

t(1) + |S(1)|
a)
≤ (1 + α) · Opt(t(1)).

Induction Step: Assume that a) and b) hold for some i ∈ {1, . . . , k−1}. We show
that this implies that a) and b) also hold for i + 1.

First, consider the case that the schedule S(i) is interrupted. Then, we
have p(i+1) = O and t(i+1) = α · Opt(t(i+1)). It immediately follows that
S(i+1) = |S(R(i+1), p(i+1))| ≤ Opt(t(i+1)) because Opt[t(i+1)] serves all requests
in R(i+1) (among others) and starts in O. With this, we obtain

t(i+1) + |S(i+1)| ≤ (1 + α) · Opt(t(i+1)).

Therefore, a) and b) hold for i+1 if S(i) is interrupted. For the rest of the proof,
assume that S(i) is not interrupted.

Assume that Opt[t(i+1)] visits p(i+1) before collecting any request in R(i+1).
Then, by definition of S(i+1) = S(R(i+1), p(i+1)), we immediately see that a)
holds for i + 1 because Opt[t(i+1)] needs to serve all requests in R(i+1) after
visiting point p(i+1). Thus, for the proof of a), it suffices to consider the case
that Opt[t(i+1)] collects some request in R(i+1) before visiting p(i+1). We denote
the first request in R(i+1) collected by Opt[t(i+1)] by r = (a, b; t).

Since S(i) is not interrupted, we have R(i+1) ∩ R(i) = ∅ and thus t > t(i).
Together with (1), this implies that Opt[t(i+1)] collects r at a not earlier than
time t > t(i) ≥ α · Opt(t(i)). By definition of r and S(R(i+1), a), this implies

Opt(t(i+1)) ≥ t + |S(R(i+1), a)| > α · Opt(t(i)) + |S(R(i+1), a)|. (3)

Further, since we assumed that Opt[t(i+1)] visits p(i+1) after visiting a later than
α · Opt(t(i)) and since the server needs at least time d(a, p(i+1)) to get from a
to p(i+1), we have

Opt(t(i+1)) ≥ α · Opt(t(i)) + d(a, p(i+1)). (4)

Let t� ≤ t(i+1) denote the largest release time of a request in R(i+1). No
requests appears in the, possibly empty, time interval (t�, t(i+1)]. Thus, we have
Opt(t�) = Opt(t(i+1)). Recall that the schedule S(i) is not interrupted. In par-
ticular, it is not interrupted at time t�, i.e., at time t�, the server cannot serve
all loaded requests and return to the origin until time α · Opt(t�). At time t�,
the server can trivially serve all loaded requests in time t(i) + |S(i)| by following
the current schedule, which ends in p(i+1). This yields

t(i) + |S(i)| + d(p(i+1), O) > α · Opt(t�) = α · Opt(t(i+1)). (5)

An Improved Algorithm for Open Online Dial-a-Ride 161

Recall that p(i+1) is the ending position of S(i) and, therefore, it is the destination
of a request in R(i). Since Opt[t(i)] needs to visit p(i+1) and starts in O, we
have d(p(i+1), O) ≤ Opt(t(i)). Further, by the induction hypothesis, we have
t(i) + |S(i)| ≤ (1 + α) · Opt(t(i)). This yields

(2 + α) · Opt(t(i)) ≥ t(i) + |S(i)| + d(p(i+1), O)
(5)
> α · Opt(t(i+1))
(4)
≥ α2 · Opt(t(i)) + α · d(a, p(i+1)),

so that

d(a, p(i+1)) <
1
α

· (2 + α − α2) · Opt(t(i)). (6)

The schedule S(i+1) starts in p(i+1) and needs to serve all requests in R(i+1). By
applying the triangle inequality, we can conclude that

|S(i+1)| ≤ d(p(i+1), a) + |S(R(i+1), a)|
(3)
< d(p(i+1), a) +Opt(t(i+1)) − α · Opt(t(i))
(6)
<

(
2
α
+ 1 − 2α

)
· Opt(t(i)) +Opt(t(i+1))

≤ Opt(t(i+1)),

where the last inequality holds because we have
(
2
α + 1 − 2α

) ≤ 0 if
α ≥ 1+

√
17

4 ≈ 1.2808.
It remains to show that b) also holds for i + 1. If the schedule S(i) is com-

pleted before time α · Opt(t(i+1)), the schedule S(i+1) is started precisely at
time t(i+1) = α · Opt(t(i+1)). Together with part a), this yields the assertion.
Therefore, assume that S(i) is not completed before time α ·Opt(t(i+1)). Then,
the schedule S(i+1) is started as soon as S(i) is completed. Together with the
induction hypothesis, this implies t(i+1) = t(i) + |S(i)| ≤ (1 + α) · Opt(t(i)).
Hence, the schedule S(i+1) can be completed in time

t(i+1) + |S(i+1)| ≤ (1 + α) · Opt(t(i)) + |S(i+1)|
(2),a)
≤ (1 + α) · 1

α
· Opt(t(i+1)) +Opt(t(i+1))

=
(
1
α
+ 2

)
· Opt(t(i+1))

≤ (1 + α) · Opt(t(i+1)),

where the last inequality holds because we have 1
α +2 ≤ 1+α if α ≥ 1+

√
5

2 = ϕ.

162 J. Baligács et al.

4 Lower Bound for Lazy

In this section, we provide lower bounds on the competitive ratio of Lazy(α).
We give a lower bound construction for α ≥ 1 and a separate construction for
α < 1. Together they show that Lazy(α) cannot be better than (3/2+

√
11/12)-

competitive for all α ≥ 0, i.e., that Corollary 1 holds. Furthermore, they narrow
the range of parameter choices that would lead to an improvement over the
competitive ratio of ϕ + 1.

In the following constructions, we let the metric space (M,d) be the real line,
i.e., M = R, O = 0, and d(a, b) = |a − b|. Note that lower bounds on the line
trivially carry over to general metric spaces. Moreover, our constructions work
for any given server capacity c ∈ N ∪ {∞} because a larger server capacity does
neither change the behavior of the optimum solution nor the behavior of Lazy.

First, observe that, for any α ≥ 0, Lazy(α) has a competitive ratio of at least
1 + α. This can be easily seen by observing the request sequence consisting of
the single request r1 = (1, 1; 1

2). In this case, the offline optimum has completed
the sequence by time 1, whereas Lazy(α) waits in O until time max(α, 1

2) and
then moves to 1 and serves r1 not earlier than 1 + α.

Lemma 1. For any α ≥ 0, Lazy(α) has a competitive ratio of at least 1+α for
the open online dial-a-ride problem on the line for any capacity c ∈ N ∪ {∞}.

Now, we give a construction for the case α ≥ 1.

Proposition 1. For α ≥ 1, Lazy(α) has a competitive ratio of at least 2 + 2
3α

for the open online dial-a-ride problem on the line.

Proof. First, observe that, for α ≥ 1/2 +
√
11/12, we have 2 + 2

3α ≤ 1 + α so
that the assertion follows from Lemma 1. Therefore, let α ∈ [1, 1/2 +

√
11/12)

and let ε > 0 be small enough such that 3α + 2 > 3α2 + αε. Note that this is
possible because 3α + 2 > 3α2 for α ∈ [1, (1/2) +

√
11/12).

We construct an instance of the open online dial-a-ride problem, where the
competitive ratio of Lazy(α) converges to 2+ 2

3α for ε → 0 (cf. Fig. 2). We define
the instance by giving the requests

r1 = (0, 1; ε), r2 = (0,−1; 2ε), and r3 = (2 − 3α − ε, 2 − 3α − ε; 3α + ε).

One solution is to first serve r1 and then r2. This is possible in 3 time units and,
after this, the server is in position −1. Then, the server can reach point 2−3α−ε
by time 3 + (3α + ε − 2 − 1) = 3α + ε. At this point in time, r3 is released and
can immediately be served. Thus, we have

Opt := Opt(3α + ε) = 3α + ε.

We now analyze what Lazy(α) does on this request sequence. We have
Opt(2ε) = 3. Thus, the server waits in O until time 3α. Since no new request
arrives until this time, the server starts an optimal schedule serving r1 and r2.
Without loss of generality, we can assume that Lazy(α) starts by serving r2,
because the starting positions and destinations of r1 and r2 are symmetrical.

An Improved Algorithm for Open Online Dial-a-Ride 163

At time 3α + ε, request r3 is released, and the server has currently loaded r2.
Delivering r2 and returning to the origin takes the server until time 3α + 2. By
definition of α and ε, we have

3α + 2 > 3α2 + αε = αOpt. (7)

This implies that the server is not interrupted in its current schedule. It continues
serving r2 and then serves r1 at time 3α + 3. Together with (7), it follows that,
after serving r1, the server immediately starts serving the remaining request r3.
Moving from 1 to 2− 3α− ε takes 3α− 1+ ε time units, i.e., the server serves r3
at time (3α + 3) + (2 − 3α − ε) = 6α + 2 + ε. Thus, the competitive ratio is at
least

6α + 2 + ε

Opt
=

6α + 2 + ε

3α + ε
= 2 +

2 − ε

3α + ε
.

The statement follows by taking the limit ε → 0.

Fig. 2. Instance of the open online dial-a-ride problem on the line where Lazy(α) has
a competitive ratio of at least 2 + 2

3α
for all α ≥ 1.

Next, we give a lower bound construction for α < 1.

Proposition 2. For α ∈ [0, 1), the algorithm Lazy(α) has a competitive ratio
of at least 1 + 3

α+1 for the open dial-a-ride problem on the line.

Proof. Let α ∈ [0, 1) and ε ∈ (0,min{α
2 , 1

α −α, 1−α}). We construct an instance
of the open dial-a-ride problem, where the competitive ratio of Lazy(α) con-
verges to 1 + 3

α+1 for ε → 0 (cf. Fig. 3). We define the instance by giving the
requests

r1 =
(

ε

2
,
1
2
;
ε

2

)
, r2 = (1, 1; ε), r3 = (0, 0;α + ε),

r4 =
(1
2
+ ε, 1;α + 2ε

)
, and r5 = (1, 1;α + 1 + ε).

One solution is to first wait in O until time α+ ε and serve r3. Then, the server
can move to ε/2, pick up r1 and deliver it. Then, we can move to 1

2 + ε, pick

164 J. Baligács et al.

up r4 and deliver it. This can be done by time α + 1 + ε. Now, the server is in
position 1 and can thus immediately serve r5. It finishes serving all request in
time α + 1 + ε. Since the last request is released at time α + 1 + ε, we have

Opt := Opt(α + 1 + ε) = α + 1 + ε. (8)

We now analyze what Lazy(α) does on this request sequence. We have
Opt(ε/2) = 1/2 so that α · Opt(ε/2) = α/2 > ε and the server does not
start moving before r2 is released. Then, we have Opt(ε) = 1. Hence, the
server waits in O until time α. Since no new requests arrive until this time,
the server starts an optimal schedule serving r1 and r2, i.e., it moves to ε/2
and picks up r1. At times α + ε and α + 2ε, r3 and r4 are released. We have
Opt(α + ε) = Opt(α + 2ε) = α + 1 + ε. Serving the loaded request r1 and
returning to 0 would take the server until time

α + 1
ε< 1

α −α

> α + (α2 + αε) = α(α + 1 + ε) = α · Opt(α + ε). (9)

Thus, the server keeps following its tour and serves r1 and then r2 at time
α+1. By (9) and since Opt(α+1) = Opt(α+ ε), the server immediately starts
serving r3 and r4. The shortest tour is serving r4 first, i.e., the server starts
moving towards 1

2 + ε. At time α + 1 + ε, request r5 is released. Since

α + 1 + ε
(8)
= Opt(α + 1 + ε) > α · Opt(α + 1 + ε),

the server keeps following its tour, which is finished at time
(α + 1) + (1 − 2ε) + 1 = 3 + α − 2ε in position O. Then, the server starts its
last tour in order to serve r5. It moves to 1 and finishes serving the last request
at time 4 + α − 2ε. Thus, the competitive ratio is

4 + α − 2ε
Opt

=
4 + α − 2ε
α + 1 + ε

= 1 +
3 − 3ε

α + 1 + ε
.

The statement follows by taking the limit ε → 0.

Fig. 3. Instance of the open online dial-a-ride problem on the line where Lazy(α) has
a competitive ratio of at least 1 + 3

α+1
for all α ∈ [0, 1).

An Improved Algorithm for Open Online Dial-a-Ride 165

We now give another lower bound construction which is stonger than the
previous one for large α < 1.

Proposition 3. For α ∈ [0, 1), the algorithm Lazy(α) has a competitive ratio
of at least 2 + α + 1−α

2+3α for the open online dial-a-ride problem on the line.

Proof. Let ε > 0 be small enough. We construct an instance of the open online
dial-a-ride problem on the line, where the competitive ratio of Lazy(α) converges
to 2 + α + 1−α

2+3α for ε → 0 (cf. Fig. 4). We distinguish between three cases.

Case 1 (α ∈ [0, 2/3)): We define the instance by giving the requests

r1 = (0, 1; ε),
r2 = (−α,−α;α + ε),
r3 = (2 + α − ε, 2 + α − ε;α + 2ε),
r4 = (2 + α − ε, 2 + α − ε; 2 + 3α).

One solution is to move to −α and wait there until time α+ ε. Then, r2 can be
served, and the server can move to 0 where it arrives at time 2α + ε. It picks
up r1 and delivers it at time 2α+1+ε at 1. It keeps moving to position 2+α−ε
and serves r3 and r4 there at time 2 + 3α. Since the last request is released at
time 2 + 3α, we have

Opt := Opt(2 + 3α) = 2 + 3α.

We now analyze what Lazy(α) does. We have Opt(ε) = 1+ ε. Thus, the server
starts waiting in 0 until time α(1 + ε). At time α(1 + ε), the server starts an
optimal schedule over all unserved requests, i.e., over {r1}. It picks up r1 and
starts moving towards 1. At time α + ε > α(1 + ε), request r2 arrives. We have
Opt(α + ε) = 2α + 1 + ε. Serving the loaded request r1 and returning to the
origin would take the server until time

α(1 + ε) + 2 > α(2α + 1 + ε) = αOpt(α + ε),

i.e., the server continues its current schedule. At time α+ 2ε, r3 is released. We
have Opt(α + 2ε) = 2 + 3α. Serving the loaded request and returning to the
origin would still take until time

α(1 + ε) + 2 > 2α + 3α2 = αOpt(α + 2ε),

where the inequality follows from the fact that α < 2
3 . Thus, the server continues

the current schedule, which is finished at time α(1 + ε) + 1 in position 1. The
server waits until time max{1 + α, αOpt(α + 2ε)} and then starts the next
schedule. Since αOpt(α + 2ε) = 2α + 3α2 < 2 + 3α, the next schedule is thus
started before r4 is released. It is faster to serve r3 before r2 in this schedule
because the server starts from point 1. At time 2+3α, request r4 is released. Since
this does not change the completion time of the optimum and because the server
started the current schedule not earlier than time αOpt(α+2ε), it continues the

166 J. Baligács et al.

current schedule. The second schedule takes (1+α−ε)+(2+2α−ε) = 3+3α−2ε
time units and ends in −α. The last schedule, in which r4 is served, is started
immediately and takes 2 + 2α − ε time units. Hence, Lazy(α) takes at least

(α(2 + 3α)) + (3 + 3α − 2ε) + (2 + 2α − ε) = 5 + 7α + 3α2 − 3ε

time units to serve all requests.

Case 2 (α ∈ [23 ,
√
37−12ε−1

6)): We define the instance by giving the requests

r1 = (0, 1; ε),
r2 = (−α,−α;α + ε),

r3 =
(2

α
+ 1 − 2α − ε,

2
α
+ 1 − 2α − ε;α + 2ε

)
,

r4 = (2 + α − ε, 2 + α − ε; 2 + α − ε),
r5 = (2 + α − ε, 2 + α − ε; 2 + 3α).

One solution is to move to −α and wait there until time α+ ε. Then, r2 can be
served, and the server can move to 0 where it arrives at time 2α+ ε. It picks up r1
and delivers it at time 2α + 1 + ε at 1. It keeps moving to position 2

α +1−2α−ε,
where it arrives at time 2

α + 1 and immediately serves r3. It continues to move
to 2 + α − ε and serves r4 and r5 there at time 2 + 3α. Since the last request is
released at time 2 + 3α, we have

Opt = Opt(2 + 3α) = 2 + 3α.

We now analyze what Lazy(α) does. We have Opt(ε) = 1+ ε. Thus, the server
starts waiting in 0 until time α(1 + ε). At time α(1 + ε), the server starts an
optimal schedule over all unserved requests, i.e., over {r1}. It picks up r1 and
starts moving towards 1. At time α + ε > α(1 + ε), request r2 arrives. We have
Opt(α + ε) = 2α + 1 + ε. Serving the loaded request r1 and returning to the
origin would take the server until time

α(1 + ε) + 2 > α(2α + 1 + ε) = αOpt(α + ε),

i.e., the server continues its current schedule. At time α+ 2ε, r3 is released. We
have Opt(α + 2ε) = 2

α + 1. Serving the loaded request and returning to the
origin would still take until time

α(1 + ε) + 2 > 2 + α = αOpt(α + 2ε).

Thus, the server continues the current schedule which is finished at time 1 + α
in position 1. Since 1 + α < 2 + α = αOpt(α + 2ε), the server starts wait-
ing in 1 until time 2 + α. At time 2 + α − ε, request r4 is released. We have
Opt(2 + α − ε) = 2 + 3α. It would take the server until time

3 + α − ε > 2α + 3α2 = αOpt(2 + α − ε)

An Improved Algorithm for Open Online Dial-a-Ride 167

to return to the origin, where the inequality follows from the fact that
α <

√
37−12ε−1

6 . Thus, the server starts waiting until time
αOpt(2 + α − ε) = 2α + 3α2. After it finished waiting, it starts the second
schedule and tries to serve r3, r4 and then r2. At time 2 + 3α, request r5 is
released. Since this does not change the completion time of the optimum and
because the server started the current schedule at time αOpt(α+2ε), it contin-
ues its current schedule. The second schedule takes (1 + α − ε) + (2 + 2α − ε) =
3+ 3α − 2ε time units and ends in −α. The last schedule, in which r5 is served,
is started immediately and takes 2 + 2α − ε time units. Hence, Lazy(α) takes
until time

(α(2 + 3α)) + (3 + 3α − 2ε) + (2 + 2α − ε) = 5 + 7α + 3α2 − 3ε

to serve all requests.

Fig. 4. Instance of the open online dial-a-ride problem on the line where Lazy(α) has
a competitive ratio of at least 2 + α 1−α

2+3α
for all α ∈ [0, 1). This is the construction of

Case 2 in the proof of Theorem 3.

Case 3 (α ∈ [
√
37−12ε−1

6 , 1)): We define the instance by giving the requests

r1 = (0, 1; ε),
r2 = (−α,−α;α + ε),

r3 =
(2

α
+ 1 − 2α − ε,

2
α
+ 1 − 2α − ε;α + 2ε

)
,

r4 =
(3

α
+ 1 − 2α − (2 + α)ε

α
,
3
α
+ 1 − 2α − (2 + α)ε

α
; 2 + α − ε

)
,

r5 = (2 + α − ε, 2 + α − ε; 3 + α − 3ε),
r6 = (2 + α − ε, 2 + α − ε; 2 + 3α).

One solution is to move to −α and wait there until time α+ ε. Then, r2 can be
served, and the server can move to 0 where it arrives at time 2α+ ε. It picks up r1
and delivers it at time 2α + 1 + ε at 1. It keeps moving to position 2

α +1−2α−ε,
where it arrives at time 2

α + 1 and immediately serves r3. It continues to move

168 J. Baligács et al.

to 3
α + 1 − 2α − (2+α)ε

α , where it arrives at time 3
α + 1 − 2ε

α and immediately
serves r4. Lastly, it moves to 2 + α − ε, where it arrives at time 2 + 3α and
serves r4 and r5 there. Since the last request is released at time 2+ 3α, we have

Opt = Opt(2 + 3α) = 2 + 3α.

We now analyze what Lazy(α) does. We have Opt(ε) = 1+ ε. Thus, the server
starts waiting in 0 until time α(1 + ε). At time α(1 + ε), the server starts an
optimal schedule over all unserved requests, i.e., over {r1}. It picks up r1 and
starts moving towards 1. At time α + ε > α(1 + ε), request r2 arrives. We have
Opt(α + ε) = 2α + 1 + ε. Serving the loaded request r1 and returning to the
origin would take the server until time

α(1 + ε) + 2 > α(2α + 1 + ε) = αOpt(α + ε),

i.e., the server continues its current schedule. At time α + 2ε, request r3 is
released. Now, we have Opt(α + 2ε) = 2

α + 1. Serving the loaded request and
returning to the origin would still take until time

α(1 + ε) + 2 > 2 + α = αOpt(α + 2ε).

Thus, the server continues the current schedule which is finished at time 1 + α
in position 1. Since 1 + α < 2 + α = αOpt(α + 2ε), the server starts wait-
ing in 1 until time 2 + α. At time 2 + α − ε, request r4 is released. We have
Opt(2 + α − ε) = 3

α + 1 − 2ε
α . It would take the server until time

3 + α − ε > 3 + α − 2ε = αOpt(2 + α − ε),

to return to the origin, i.e., the server starts waiting until time
αOpt(2 + α − ε) = 3 + α − 2ε. At time 3 + α − 3ε, request r5 is released. We
have Opt(3 + α − 3ε) = 2 + 3α. It would take the server until time

4 + α − 3ε > 2α + 3α2 = αOpt(3 + α − 3ε)

to return to the origin, where the inequality follows from the fact that
α < 1 and that ε is small. Thus, the server waits in 1 until time
αOpt(3 + α − 3ε) = 2α + 3α2 and then starts its second schedule to serve
requests r3, r4, r5 and then r2. At time 2 + 3α, request r6 is released. Since
this does not change the completion time of the optimum and because the server
started the current schedule at time αOpt(3 + α − 3ε), it continues its current
schedule. The second schedule takes (1 + α − ε) + (2 + 2α − ε) = 3 + 3α − 2ε
time units and ends in −α. The last schedule, in which r6 is served, is started
immediately and takes 2 + 2α − ε time units. Hence, Lazy(α) takes until time

(α(2 + 3α)) + (3 + 3α − 2ε) + (2 + 2α − ε) = 5 + 7α + 3α2 − 3ε

to serve all requests.

An Improved Algorithm for Open Online Dial-a-Ride 169

In all three cases, the optimal solution is 2 + 3α and the algorithm takes at
least 5+ 7α+3α2 − 3ε time units. Thus, the competitive ratio of Lazy(α) is at
least

5 + 7α + 3α2 − 3ε
2 + 3α

= 2 + α +
1 − α − 3ε
2 + 3α

.

The statement follows by taking the limit ε → 0.

Now, we combine our results for the lower bounds (cf. Fig. 5). Combin-
ing Lemma 1 and Proposition 1, we obtain that, for α ≥ 1, Lazy(α) has a
competitive ratio of at least max{1 + α, 2 + 2/3α}, which proves the lower
bound of Theorem 1. Minimizing over α ≥ 1 yields a competitive ratio of at
least 3/2 +

√
11/12 > 2.457 in that domain. For the case α < 1, we have seen

in Proposition 2 that the algorithm Lazy(α) has a competitive ratio of at least
1 + 3/(α + 1) > 5/2. Together, this proves Corollary 1.

Fig. 5. Lower bounds on the competitive ratio of Lazy(α) depending on α. The lower
bound of Lemma 1 is depicted in green, the lower bound of Proposition 1 in red, the
lower bound of Proposition 2 in orange, and the lower bound of Proposition 3 in blue.
The highlighted area over the plot indicates the domain of α for which no improvement
over 1 + ϕ is possible. (Color figure online)

Moreover, we conclude that the results above narrow the range for α in
which Lazy(α) might have a competitive ratio better than ϕ+1. By Lemma 1,
it follows that Lazy(α) cannot have a better competitive ratio than ϕ + 1 for
any α > ϕ ≈ 1.618. By Proposition 1, we obtain that Lazy(α) has competitive
ratio at least ϕ+1 for any α with 1 ≤ α ≤ 2ϕ

3 ≈ 1.079. Proposition 2 yields that,

170 J. Baligács et al.

for 0 ≤ α ≤ 0.695, the competitive ratio of Lazy(α) is at least 2.768 > ϕ + 1.
Lastly, for 0.695 < α < 1, Proposition 3 gives a lower bound of 2.768 on the
competitive ratio of Lazy(α). To summarize, an improvement of the competitive
ratio of Lazy(α) might only be possible for some α ∈ (2ϕ/3, ϕ) ≈ [1.08, 1.618),
which proves Corollary 2.

References

1. Allulli, L., Ausiello, G., Laura, L.: On the power of lookahead in on-line vehicle
routing problems. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 728–
736. Springer, Heidelberg (2005). https://doi.org/10.1007/11533719_74

2. Ascheuer, N., Krumke, S.O., Rambau, J.: Online dial-a-ride problems: minimizing
the completion time. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770,
pp. 639–650. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46541-
3_53

3. Ausiello, G., Demange, M., Laura, L., Paschos, V.: Algorithms for the on-line quota
traveling salesman problem. Inf. Process. Lett. 92(2), 89–94 (2004)

4. Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for
the on-line travelling salesman. Algorithmica 29(4), 560–581 (2001). https://doi.
org/10.1007/s004530010071

5. Ausiello, G., Allulli, L., Bonifaci, V., Laura, L.: On-line algorithms, real time, the
virtue of laziness, and the power of clairvoyance. In: Cai, J.-Y., Cooper, S.B., Li,
A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 1–20. Springer, Heidelberg (2006).
https://doi.org/10.1007/11750321_1

6. Bienkowski, M., Kraska, A., Liu, H.: Traveling repairperson, unrelated machines,
and other stories about average completion times. In: Bansal, N., Merelli, E., Wor-
rell, J. (eds.) Proceedings of the 48th International Colloquium on Automata,
Languages, and Programming (ICALP), pp. 1–20 (2021)

7. Bienkowski, M., Liu, H.: An improved online algorithm for the traveling repair-
person problem on a line. In: Proceedings of the 44th International Symposium on
Mathematical Foundations of Computer Science (MFCS), pp. 6:1–6:12 (2019)

8. Birx, A.: Competitive analysis of the online dial-a-ride problem. Ph.D. Thesis, TU
Darmstadt (2020)

9. Birx, A., Disser, Y.: Tight analysis of the smartstart algorithm for online dial-a-ride
on the line. SIAM J. Discret. Math. 34(2), 1409–1443 (2020)

10. Birx, A., Disser, Y., Schewior, K.: Improved bounds for open online dial-a-ride on
the line. In: Proceedings of the 22nd International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX), vol. 145, p.
21(22) (2019)

11. Bjelde, A., et al.: Tight bounds for online TSP on the line. ACM Transact. Algo-
rithms 17(1), 1–58 (2020)

12. Blom, M., Krumke, S.O., de Paepe, W.E., Stougie, L.: The online TSP against fair
adversaries. INFORMS J. Comput. 13(2), 138–148 (2001)

13. Bonifaci, V., Stougie, L.: Online k-server routing problems. Theor. Comput. Syst.
45(3), 470–485 (2008)

14. Feuerstein, E., Stougie, L.: On-line single-server dial-a-ride problems. Theoret.
Comput. Sci. 268(1), 91–105 (2001)

15. Hauptmeier, D., Krumke, S., Rambau, J., Wirth, H.C.: Euler is standing in line
dial-a-ride problems with precedence-constraints. Discret. Appl. Math. 113(1), 87–
107 (2001)

https://doi.org/10.1007/11533719_74
https://doi.org/10.1007/3-540-46541-3_53
https://doi.org/10.1007/3-540-46541-3_53
https://doi.org/10.1007/s004530010071
https://doi.org/10.1007/s004530010071
https://doi.org/10.1007/11750321_1

An Improved Algorithm for Open Online Dial-a-Ride 171

16. Hauptmeier, D., Krumke, S.O., Rambau, J.: The online dial-a-ride problem under
reasonable load. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000.
LNCS, vol. 1767, pp. 125–136. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-46521-9_11

17. Jaillet, P., Lu, X.: Online traveling salesman problems with service flexibility. Net-
works 58(2), 137–146 (2011)

18. Jaillet, P., Lu, X.: Online traveling salesman problems with rejection options. Net-
works 64(2), 84–95 (2014)

19. Jaillet, P., Wagner, M.R.: Generalized online routing: new competitive ratios,
resource augmentation, and asymptotic analyses. Oper. Res. 56(3), 745–757 (2008)

20. Jawgal, V.A., Muralidhara, V.N., Srinivasan, P.S.: Online travelling salesman prob-
lem on a circle. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436,
pp. 325–336. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-
6_20

21. Krumke, S.O.: Online optimization competitive analysis and beyond. Habilitation
thesis, Zuse Institute Berlin (2001)

22. Krumke, S.O., et al.: Non-abusiveness helps: an O(1)-competitive algorithm for
minimizing the maximum flow time in the online traveling salesman problem. In:
Jansen, K., Leonardi, S., Vazirani, V. (eds.) APPROX 2002. LNCS, vol. 2462, pp.
200–214. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45753-4_18

23. Krumke, S.O., de Paepe, W.E., Poensgen, D., Lipmann, M., Marchetti-Spaccamela,
A., Stougie, L.: On minimizing the maximum flow time in the online dial-a-ride
problem. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp.
258–269. Springer, Heidelberg (2006). https://doi.org/10.1007/11671411_20

24. Krumke, S.O., de Paepe, W.E., Poensgen, D., Stougie, L.: News from the online
traveling repairman. Theoret. Comput. Sci. 295(1–3), 279–294 (2003)

25. Lipmann, M., Lu, X., de Paepe, W.E., Sitters, R.A., Stougie, L.: On-line dial-a-
ride problems under a restricted information model. Algorithmica 40(4), 319–329
(2004)

26. Lippmann, M.: On-line routing. Ph.D. thesis, Technische Universiteit Eindhoven
(2003)

27. Yi, F., Tian, L.: On the online dial-a-ride problem with time-windows. In: Megiddo,
N., Xu, Y., Zhu, B. (eds.) AAIM 2005. LNCS, vol. 3521, pp. 85–94. Springer,
Heidelberg (2005). https://doi.org/10.1007/11496199_11

https://doi.org/10.1007/3-540-46521-9_11
https://doi.org/10.1007/3-540-46521-9_11
https://doi.org/10.1007/978-3-030-14812-6_20
https://doi.org/10.1007/978-3-030-14812-6_20
https://doi.org/10.1007/3-540-45753-4_18
https://doi.org/10.1007/11671411_20
https://doi.org/10.1007/11496199_11

Stochastic Graph Exploration with Limited
Resources

Ilan Reuven Cohen(B)

Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
ilan-reuven.cohen@biu.ac.il

Abstract. In recent years, the explosion of research on large-scale networks has
been fueled to a large extent by the increasing availability of large, detailed net-
work data sets. Specifically, exploration of social networks constitutes a growing
field of research, as they generate a huge amount of data on a daily basis and
are the main tool for networking, communications, and content sharing. Explor-
ing these networks is resource-consuming (time, money, energy, etc.). Moreover,
uncertainty is a crucial aspect of graph exploration since links costs are unknown
in advance, e.g., creating a positive influence between two people in social net-
works. One approach to model this problem is the stochastic graph exploration
problem [4], where, given a graph and a source vertex, rewards on vertices, and
distributions for the costs of the edges. The goal is to probe a subset of the edges,
so the total cost of the edges is at most some prespecified budget, and the sub-
graph is connected, containing the source vertex, and maximizes the total reward
of the spanned vertices. In this stochastic setting, an optimal probing strategy is
likely to be adaptive, i.e., it may determine the next edge to probe based on the
realized costs of the already probed edges. As computing such adaptive strategies
is intractable [15], we focus on developing non-adaptive strategies, which fix a
list of edges to probe in advance. A non-adaptive strategy would not be compet-
itive versus the optimal adaptive one unless it uses a budget augmentation. The
current results demand an augmentation factor, which depends logarithmically on
the number of nodes. Such a factor is unrealistic in large-scale network scenarios.
In this paper, we provide constant competitive non-adaptive strategies using only
a constant budget augmentation for various scenarios.

Keywords: Stochastic optimization · Graph exploration · Non-adaptive
strategies

1 Introduction

Network exploration is a fundamental paradigm for discovering information available at
the nodes of a network. The rise of social networks increased the number of nodes and
links dramatically, and exploring them demands many resources. A network exploration
algorithm defines a probing strategy that decides at each stage of the process which
edges to probe. For the exploration of social networks, the network structure is known in

This research was supported by the Israel Science Foundation (grant No. 1737/21).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Chalermsook and B. Laekhanukit (Eds.): WAOA 2022, LNCS 13538, pp. 172–189, 2022.
https://doi.org/10.1007/978-3-031-18367-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18367-6_9&domain=pdf
http://orcid.org/0000-0001-7870-6319
https://doi.org/10.1007/978-3-031-18367-6_9

Stochastic Graph Exploration with Limited Resources 173

advance, e.g., followers on Twitter, friends on Facebook, etc. However, the aggregation
of information in this network is uncertain, e.g., whether tweets/posts of a user would
be retweeted/shared by their followers. Most of the recent work [23,26,27] deals with
real-world networks’ exploration when a limited budget is available, but they do not
provide a comprehensive theoretical study of these problems. In this work, we continue
the theoretical study of exploring networks, initiated by [4].

The main difficulty in designing effective probing strategies, other than their enor-
mous size, is that they must perform well in an uncertain environment, where the
amount of resource (cost) associated with a specific link (edge) is unknown in advance.
A common assumption, instead, is that the distributions of the edges’ costs may be well-
estimated by using various properties of the connecting nodes. Accordingly, a good
probing strategy might have an adaptive nature; it may determine the future network
portion to be explored according to the realized cost of the edges already explored.
Unfortunately, finding such optimal adaptive strategies is often intractable [15]. More-
over, implementing an efficient adaptive strategy might be impossible. In various explo-
ration process applications, many machines work in parallel, and the updated adaptive
strategy must be communicated to the machines participating in the process. As a result,
the communication cost required by an adaptive strategy may also be high. Therefore,
we are interested in devising non-adaptive probing strategies that are simple and that
define the sequence of probes in advance before the process is started. We continue
the recent line of research [8,21,22] developing polynomial computable non-adaptive
strategies that are competitive against the optimal adaptive strategy.

In this work, we extended the work in [4] where they considered exploring a net-
work from a root node. The graph has deterministic rewards on nodes and costs on
edges, where each edge cost is drawn independently from a known distribution. They
mainly focused on designing non-adaptive strategies for exploring the graph, where they
demonstrated that in order to achieve a reasonable approximation guaranteeing a bud-
get augmentation is mandatory, so a crucial aspect is the augmentation factor used by
the non-adaptive strategy. Unfortunately, they only provide algorithms that use budget
augmentation, which depends on the logarithm of the number of nodes in the network
(and the maximal revenue from a node). As the main motivation is exploring large-
scale networks where the number of nodes is immense, those algorithms are, in fact,
impractical. In this paper, we develop non-adaptive algorithms for strategies that use a
considerably less amount of resources compared to the currently known algorithms.

Problem Definition. Given an instance I = (V,E, r, π,R, B), the underlying graph
is G(V,E) and r ∈ V is the source vertex, and n = |V | is the number of vertices.
The edge costs C : E → R≥0 are drawn independently according to π(e), for e ∈
E, and deterministic rewards of vertices R : V → R≥0. (The model can be easily
extended to rewards distributed according to independent random variables.) A graph-
exploration process constructs a set of edges F ⊆ E that it probes. All vertices of the
subgraph of G spanned by F must be connected to r via the edges of F . The process
probes one by one the edges and adds them to F . The actual cost of an edge e, drawn
independently from the distribution π(e), is revealed only when the edge is probed. The
objective is to maximize the expected total reward from the vertices spanned by the
edge set F , while the total cost of the edges in F remains bounded by a prespecified

174 I. R. Cohen

budget B. As soon as the total cost of F exceeds B, the process terminates. Our goal
is to design a polynomial computable non-adaptive strategy, where, given an instance
I, it computes an ordered list of the edges in advance, where every prefix of the list
induces a subtree that contains r. The expected gain of a list strategy is the sum of
the vertex’s reward times the probability that the vertex is successfully added, i.e., that
the total cost of the vertex’s list prefix does not exceed the budget. We compare this
gain to an adaptive strategy expected gain, which may decide on the next edge to be
probed after the cost of all previously probed edges is revealed. Note that the adaptive
algorithm does not know the realization of the edges’ costs in advance, and once it
probes an edge, it must be added to its set. As mentioned, there exist simple instances
where the ratio between any non-adaptive expected reward to an adaptive reward is
Ω(n). Therefore, we allow the non-adaptive one to use a limited amount of budget
augmentation. Accordingly, we call an algorithm (α, β)-approximate if it computes a
strategy which uses budget β · B, and obtains an expected reward of at least 1/α times
the optimal reward (obtained by an adaptive algorithm). In this work, we will focus on
algorithms that are (O(1), O(1))-approximate, i.e., algorithms for strategies that use a
constant factor of budget augmentation and ensure a constant fraction of the optimal
adaptive reward.

1.1 Summary of Results and Techniques

Our main contribution is developing non-adaptive competitive algorithms for the
stochastic graph exploration problem, which uses only a constant amount of budget
augmentations. We provide positive results for two important scenarios: spider graphs
and bounded-weighted-depth trees.

Spider Graphs. We study a spider-tree graph where all the vertices except the root
have an out-degree of at most 1. These graphs are natural extensions for job scheduling
applications for the stochastic knapsack, introduced in [15]. In this application, the goal
is to schedule a maximum-value subset of n jobs with uncertain duration within a fixed
amount of time, and captures the reality of job scheduling, where we cannot go back in
time, in case a scheduled job has taken too long to complete. The spider graph instances
apply to scenarios where before processing a certain job, it must process some chain
of jobs in advance, and the duration of each job in the chain is stochastic. Note that
for scenarios where the reward is just when completing a complete job chain (i.e., the
reward is zero on non-leafs vertices), the spider-tree formulation gives extra power to
the adaptive strategies versus the stochastic knapsack formulation. This arises from the
fact that in such instances, an adaptive strategy may abort a chain in the middle, while
in the knapsack setting, the entire chain must be represented as a single edge (so if
begun, it must be completed). On the other hand, in both formulations, the non-adaptive
strategies must complete the entire chain of jobs once started.

Bounded Weighted Depth Trees. For a general tree structure, we achieved a constant
approximation and augmentation for bounded weighted depth trees instances. In those
instances, the expected cost of the path from the root to each node is bounded (with
respect to the entire budget). The structure of the social network (as in Six degrees of
separation assumption [30]) implies that this scenario is extremely practical.

Stochastic Graph Exploration with Limited Resources 175

Our Techniques. Given an instance I, we bound the value of the optimal adaptive
strategy using a linear program (LP) formulation ΦI . This extends the LP formulation
of [15] and captures the dependence between the probing probabilities of different edges
in the graph. In addition, we define a relaxation of this LP, namely Φ̂I , and characterize
the structure of an optimal solution for it. In order to solve spider graphs instances,
we divide the set of nodes into two, the risky nodes, where the expected cost from the
root to those nodes is more than half of the entire budget, and the rest of the nodes
(which are a connected component that contains r). For the risky nodes, using the solu-
tion of the LP ΦI , we prove that a non-adaptive strategy that probes a single leg and
uses budget augmentation is a constant competitive. For the non-risky nodes, we use
the solution’s structure of Φ̂I and present a competitive set strategy. Combining the two
results implies a constant approximation algorithm that uses at most constant augmen-
tation. Our algorithm for bounded-weighted-depth trees instances also uses the solution
of Φ̂I . However, the resulting structure of the optimal solution is more complex, and the
total expected cost of the edges in support of the solution might be much higher than the
budget. To address this issue, we introduce the Tree Decomposition algorithm, which
can decompose such a solution to a bounded number of subtrees, where each subtree
contains r and has a bounded total expected cost. We prove that sampling one of those
subtrees (entirely) is a competitive non-adaptive strategy. Finally, we prove the limita-
tion of the proposed LP ΦI , by presenting an instance where the gap between the LP
and an adaptive solution (even with budget augmentation) is unbounded, which raises
questions about future directions on how to bound a general instance of this problem.

1.2 Related Work

The first work on the adaptivity gap of stochastic problems has been studied for the
knapsack problem [10,15]. Note that the stochastic knapsack problem is a special
case of the problem we study, where the underlying graph is a star-graph. As men-
tioned, the model studied in this paper has been introduced in [4]. In [4], they show
an Ω(n) adaptivity gap for this problem, and in order to circumvent the impossibility
result, they allow a limited amount of resource augmentation. They presented polyno-
mial time computable non-adaptive strategies in a graph of n vertices and where R is
maximum reward of a vertex, which are (O(1), O(log nR))-approximate for trees and
(O(log(nR)), O(log(nR)))-approximate for general graphs.

Another set of problems related to the stochastic graph exploration problem are
various stochastic orienteering problems [8,19,28]. In stochastic orienteering, the set
of traversed edges must form a path in a metric graph with deterministic costs on the
edges, while the time spent on a node is a random variable, which follows an a priori
known distribution. In stochastic graph exploration, the random variables are the costs
of the edges of the graph, but we cannot ensure that the costs on the edges form a metric
since the random variables are independent.

The adaptivity gap has also been studied for budgeted multi-armed bandits [17,
18,24] by resorting to suitable linear programming relaxation. Unlike previous work
on budgeted multi-armed bandit problems, we consider the setting in which new arms
appear after some arms are pulled. Stochastic probing problems have also been studied
for matching [1,7,13], motivated by kidney exchange and for more general classes of

176 I. R. Cohen

matroid optimization problems [20,21]. Various other stochastic problems are recently
studied, such as variations on the Pandora’s box [5,9,11,12,25], stochastic k-TSP [22],
scheduling [2,3,16], probing [14,21,29], stochastic vertex cover in (hyper-)graphs [6],
etc.

2 Preliminaries

Notations. We assume without loss of generality that B = 1, and we focus of on tree
instances. For instance, I = (V,E, r, π,R), where r ∈ V is the root of the directed tree
G = (V,E), we assume that the edges are pointed away from the root. Accordingly, we
denote Parent(v) as the parent of a vertex v, the vertex connected to v on its path to
the root, 〈Parent(v), v〉 ∈ E, and let ev = 〈Parent(v), v〉 ∈ E. For ease of notation,
we denote C(v) = C(ev) (C(r) = 0), and π(v) = π(ev). Let Path(u, v) be the
set of vertices on the path from u to v (including u, v), and let D(v) = Path(r, v).
For a subtree F ⊆ V , let C(F) be the total realized cost of its edges, i.e., C(F) =∑

e∈F C(e) and let R(F) be the total reward of its vertices, i.e. R(F) =
∑

v∈F R(v).

Types of Strategies. An adaptive strategy determines for any subtree F ⊆ V , r ∈ F ,
and remaining budget 1 − C(F) which adjacent edge to F to probe, (i.e., edge 〈u, v〉
such that u ∈ F and v /∈ F). Note that if C(F) > 1, the strategy must halt. A vertex
v is successfully added if ev is probed and C(F) ≤ 1 immediately afterward (R(v) is
added to the total gain of the strategy). For a fixed adaptive strategy, we denote xv the
probability that this strategy probes the edge ev , and yv the probability that this strategy
successfully add the vertex v to its connected component. The expected gain of this
strategy is: ∑

v∈V

yv · R(v).

In Sect. 3, we bound the optimal solution value via a set of constraints on {xv, yv : v ∈
V }.

The two main non-adaptive strategies are: the list strategy and the set strategy. A
list strategy specifies an ordered list of the vertices L = (v1 = r, . . . , vn), where for
any k, (v1, . . . , vk) is a connected subtree. The expected gain of a list strategy L with a
budget B is:

n∑

k=1

Pr

[
k∑

i=1

C(vi) ≤ B
]

· R(vk).

A set strategy (all-or-nothing) specifies a subtree F (r ∈ F) in advance, and either
gains the entire content of F , if the total cost of F did not overflow the budget, or gains
nothing otherwise. The expected gain of a set strategy F with a budget B is:

Pr[C(F) ≤ B] · R(F).

Stochastic Graph Exploration with Limited Resources 177

3 Bounding the Optimal Adaptive Policy

In this section, we bound the value of an adaptive strategy given an instance I. Recall
that for a fixed strategy, we denote xv , the probability that the strategy probes the edge
ev , and yv , the probability that the strategy successfully add vertex v to its connected
component. We first note that we can bound the probability that a strategy probes an
edge by the probability it probes its successor edge, i.e., for any v ∈ V we have xv ≤
xParent(v).

A simple Example 16, demonstrated that this condition is not sufficient. Instead, we
bound yv (the probability of successfully adding v) by the probability it probed one of
its predecessors edge eu ∈ D(v), times the probability the cost of the path between u, v
is less than the adaptive budget (1).

Lemma 1. Given a tree-instance I, and v, u ∈ V s.t. u ∈ D(v), then

yv ≤ Pr[C(Path(u, v)) ≤ 1] · xu.

Proof. Given a pair of vertices v, u, where u ∈ D(v), by the definition of a feasible
adaptive strategy, it may probe the pathPath(u, v) only if it probes the edge eu first, and
the total cost of Path(u, v) is independent of the probability of sampling eu. Finally,
in order that v would be successfully added to F , the total cost of this path must be at
most 1, i.e., C(Path(u, v)) ≤ 1.

Our second lemma bounds the set of all vertices that an adaptive policy tries to
insert. We extend the lemma in [15] to deal with budget augmentation. The main idea
is to exploit the property of irrevocable decisions, which forces the adaptive policy to
keep a vertex even if its size turns out to be large. Let μB(v) = E[min{B, C(v)}]
the truncated expected size with respect to the augmented budget B, and μB(F) =∑

v∈F μB(v). For ease of notation, we denote μ(v) = μ1(v).

Lemma 2. For B ≥ 1 we have
∑

v∈V xvμB(v) ≤ 1 + B.
Proof. Our proof extends lemma 2 in [15]. For an adaptive policy, let St denote the
set of the first t vertices chosen by it. Once the size of St overflows, no further ver-
tices are added to St, and St remains constant after this. Let CB(v) = min{C(v),B},
We define a series Xt =

∑
i∈St

CB(vi) − μB(vi). It is easy to verify Xt is a mar-
tingale, and since X0 = 0, we have E[Xt] = 0, which yields E

[∑
i∈St

CB(vi)
]

=
E

[∑
i∈St

μB(vi)
]
. The process stops when C(St) > 1 or we have no more vertices left.

Since
∑

i∈St
CB(vi) ≤ C(St) and each CB(vi) ≤ B, we get ∑

i∈St
CB(vi) ≤ 1 + B

for any t > 0. The mean size of all the vertices inserted by the policy (including the
first one which exceeds knapsack capacity) is μ(S) = limt→∞ μ(St) and therefore
E[μ(S)] = limt→∞ E[μ(St)] ≤ 1 + B.
Given an instance I, we define ΦI,B(t) as the optimal solution value for the following
linear program (Fig. 1):

Using Lemmas 1, 2, we have:

Theorem 3. Given a tree-instance I, the expected gain of any adaptive policy with
budget B is at most ΦI,B(1 + B).

178 I. R. Cohen

Fig. 1. ΦI,B(t) - the linear program for bounding the optimal adaptive policy.

Next, we provide several characterizations for the solution of Φ(t) (we omit the
subscripts I,B for a fixed set of parameters). First, we prove that ΦI,B(t) is a concave
function.

Claim. For γ ∈ [0, 1] we have, ΦI,B(γ · t) ≥ γ · ΦI,B(t).

Proof. Given an optimal solution yv, xv for Φ(t), then γ ·xv, γ ·yv is a feasible solution
for Φ(γ · t) and its values is γ · ΦI,B(t).

The next claim states that the constraint xu ≤ xParent(u) for u ∈ V \ {r} implied
by the other constraints.

Claim. There exists an optimal solution of ΦI,B(t), such for u ∈ D(v) that

xv ≤ xu · Pr[C(Path(u,Parent(v))) ≤ 1] .

Proof. Given a solution, and v, u ∈ D(v) such that xv > xu ·
Pr[C(Path(u,Parent(v))) ≤ 1], we show that xv is not binding in any constraint and
can be reduced. For a constraint v, w (v ∈ D(w)):

xv · Pr[C(Path(v, w)) ≤ 1] > xu · Pr[C(Path(u,Parent(v))) ≤ 1] · Pr[C(Path(v, w)) ≤ 1]

≥ xu · Pr[C(Path(u, w)) ≤ 1] ≥ yw,

where the first inequality is derived from our assumption, the second inequality arises
from: Path(u,w) = Path(u,Parent(v)) ∪ Path(v, w), and the last inequality is a by
the definition of ΦI .

Corollary 4. There exists an optimal solution of ΦI,B(t), such that, for v ∈ V we have
xv ≤ xParent(v).

Next, we define a linear program Φ̂I,B(t), a relaxation for the original linear pro-
gram ΦI,B(t), and characterize an optimal solution for it.

Using Corollary 4, and the fact that in ΦI,B, we have yv ≤ xv, we conclude:

Observation 5. For any instance I, and for any t > 0, we have Φ̂I,B(t) ≥ ΦI,B(t).

While Φ̂I,B might not have a constant gap for general instances, see Example 16,
we will use it for sub-instances where the probability of probing any vertex in this
sub-instance is constant. As mentioned, the next lemma would characterize a possible
optimal solution.

Stochastic Graph Exploration with Limited Resources 179

Fig. 2. Φ̂I,B - relaxation for the linear program for bounding the optimal adaptive policy.

Lemma 6. There exists a solution for Φ̂(t), where for each pair of vertices v1, v2 ∈ V ,
such that 0 < xv1 , xv2 < 1, then for all vertices w ∈ Path(v1, v2) we have xw = xv2 .

Proof. We show a constructive proof that starts from an optimal solution x and com-
putes a modified optimal solution x′ until the condition holds.

We omit all vertices v and their corresponding edges such that xv = 0. For i ∈
{1, 2}, let vi ∈ V such that 0 < xvi

< 1 and Ti = {w : xu = xvi
for all u ∈

Path(w, vi)}, such that T1
= T2 (if such a pair does not exist the condition on x holds).
Note that Ti is a maximal connected subtree, which contains vi and includes vertices
u such that xvi

= xu. Assume w.l.o.g that v1, v2 are the roots of their corresponding
subtrees (the closet vertex to r in their corresponding subtrees).

If R(T1) = 0 (or R(T2) = 0), we may set x′
u = xu − ε for u ∈ T1 and

x′
u = xu. Otherwise, without decreasing the value of the solution, for large enough

ε, some vertices will join T1 connected component, or the value will reach 0. Similarly,
if μ(T1) = 0 (or μ(T2) = 0), we may set x′

u = xu + ε for u ∈ T1 and x′
u = xu,

otherwise x′ is feasible without decreasing the value of the solution. For large enough
ε, some vertices will join T1 connected component, or this value will reach 1.

Let g1 = R(T1)
μ(T1)

and g2 = R(T2)
μ(T2)

, we prove that in an optimal solution x, g1 = g2.
We show that there exists ε′ > 0 such that for ε ∈ {−ε′, ε′}, the following modified
solution x′ is feasible.

x′
v =

⎧
⎪⎨

⎪⎩

xv + ε, for v ∈ T1

xv − ε · μ(T1)
μ(T2)

, for v ∈ T2

xv, otherwise

First, Constraint 2 holds since:

∑

v∈v

x′
vμ(v) =

∑

v∈V

x′
vμ(v) + ε · μ(T1) − ε · μ(T2) · μ(T1)

μ(T2)
=

∑

v∈V

xvμ(v).

Second, note that, by definition xParent(vi) > xvi
and for all descendants of u of Ti,

xu < xvi
, therefore there exists a small enough ε for which Constraint 3 will still hold.

Finally, the objective function for x′ equals to:

∑

�∈L

x′
v�

·R(v�)−
∑

�∈L

xv�
·R(v�) = ε ·R(T1)−ε ·R(T2) · μ(T1)

μ(T2)
= ε ·μ(T1) ·(g1−g2),

180 I. R. Cohen

and if g1
= g2, the value of the objective for x′ for ε = ε′ or ε = −ε′ is higher than
the value of the objective for x, which contradicts its optimality. Therefore, by setting
ε = min{xParent(v1) −xv1 , xv2 · μ(T2)

μ(T1)
}, we have that x′ is an optimal feasible solution

and a progress has been made (either xv1 is 1, xv2 is 0, or another vertex added to T1).

Using Lemma 6, we conclude:

Corollary 7. There exists an optimal solution x for Φ̂(t) where there exists sub-trees
T1, T2 ⊆ V and a value ζ ≥ 0 such that for v ∈ T1, xv = 1 and for v ∈ T2,
xv = ζ, and xv = 0 otherwise. The value of this solution is R(T1) + ζ · R(T2), and
μ(T1) + ζ · μ(T2) ≤ t.

Finally, for a subtree F , we prove a lower bound on the probability of the realized
cost of F to be less than (a fraction of) the budget as a function of the subtree truncated
expected size.

Lemma 8. For a subtree F , and γ ∈ [0, 1], we have Pr[C(F) < γ · B] ≥ 1 − μB(F)
γ·B .

Proof.

Pr[C(F) ≥ γ · B] = Pr[min{C(F),B} ≥ γ · B]

≤ E[min{C(F),B}]
γ · B ≤

E

[
∑

v∈F

min{C(v),B}
]

γ · B =
μB(F)
γ · B ,

where the first equality is due to γ ≤ 1, the first inequality is given byMarkov’s inequal-
ity, and the second equality arises from the definition of μ.

4 Spider Graphs

Our first objective is to to develop a constant approximation algorithm for spider graphs
instances using a constant augmentation. In spider graphs, all the vertices except the root
have an out-degree of at most 1. Let L be the number of legs in the graph, we denote
in leg i ∈ [L], vi,j as the level j vertex, i.e. a vertex in leg i where its distance from the
root is j, note that this vertex is uniquely defined. Let Ci(j, k) = C(Path(vi,j , vi,k)).
Example 14 (Lemma 1 in [4]) demonstrates that even for this simple graph structure
a budget augmentation is necessary to achieve a constant competitiveness. In addition,
Example 15 demonstrates that even with budget augmentation there might not be a com-
petitive set-strategy. Nevertheless, we show that using a constant budget augmentation,
the adaptivity gap is bounded, by proving there exists a suitable list strategy.

Algorithm SpiderNoAdaptive divides the vertices into two sets, one set contains the
risky vertices, where the expected cost of the path to them is at least half the budget,
and the other set contains the rest of the vertices. The algorithm computes a constant
approximation non-adaptive strategy for each set, and the maximum of those two strate-
gies yield a constant non-adaptive strategy for the entire instance. For the risky vertices,
the algorithm outputs a single arm, we prove that a non-adaptive list strategy that probes

Stochastic Graph Exploration with Limited Resources 181

this arm and uses a constant budget augmentation has a constant competitive ratio. For
the non-risky vertices, the algorithm computes a solution to Φ̂I,1(0.5) according to the
structure of Corollary 7. The algorithm uses this solution to compute a fixed set of
vertices. We prove that a non-adaptive set strategy that probes this set has a constant
competitive ratio.

4.1 Non-adaptive Algorithm

For a constant 0 < ε < 1, we show that using (1 + ε) budget augmentation, there
exists non-adaptive strategy and its expected gain is O(ε) factor of the optimal adap-
tive gain. The algorithm is composed of two parts, the first part would address the
“risky” vertices, vertices with expected cost of the path from the root to them is at
least 0.5, and the second part will deal with the rest of the vertices. Formally, let
Risky = {vi,j : μ(D(vi,j)) > 0.5}. Accordingly, to the spider graph’s notation, let
xi,j the probability that the optimal adaptive strategy probed the edge (vi,j−1, vi,j) and
let yi,j the probability that vi,j is successfully added to the probed sub-tree. The LP
bound for adaptive strategy ΦI,1(t) reduced to:

max
∑

i,j

yi,j · R(vi,j)

s.t. :
∑

v

xi,jμ1(vi,j) ≤ t

yi,j ≤ Pr[Ci(k, j) ≤ 1] · xi,k for k ≤ j

0 ≤ xi,j , yi,j ≤ 1 for v ∈ V

Data: Spider leg tree instance I(V, E, r, π, R)
Result: Non-adaptive list strategy
Procedure Risky(I)

x, y ← Solve ΦI,1(2)
Li ← ∑

j xi,j · μ(vi,j), for all i ∈ L

L∗ ← Li with probability Li/2
return L∗

Procedure NonRisky(I)
x ← Solve Φ̂I,1(0.5) // A solution according to Corollary 7
T1 ← {(i, t) : xi,t = 1}, T2 ← {(i, t) : xi,t = ζ}
return argmax{R(T1), R(T2)}

IRisky ← I, R(vi,t) = 0 : for vi,t /∈ Risky
INon ← I, R(vi,t) = 0 : for vi,t ∈ Risky
Tr ← Risky(IRisky)
Tn ← NonRisky(INon)
return argmax{NonAdpative(Tr),NonAdpative(Tn)}
Algorithm SpiderNoAdaptive: Non-adaptive algorithm for spider trees

182 I. R. Cohen

4.2 Risky Vertices

Lemma 9. For instance I where R(vi,j) = 0, for vi,j /∈ Risky , Procedure
Risky(I) outputs a list strategy which gains at least ε/8 factor of the optimal adap-
tive policy using (1 + ε) budget augmentation.

Proof. First note that the procedure is well defined since
∑

i Li ≤ 2, by Φ(2)’s
definition. The probability of vertex vi,t to successfully being probed is Li/2 ·
Pr[Ci(1, t) ≤ 1 + ε]. For a leg i, let k the first index s.t.

∑k
t=1 μ(vi,t) ≥ ε/2.

Note that, R(vi,k′) = 0 for for k′ < k. Since by the definition of k,
∑k′

t=1 μ(vi,t) <
ε/2 ≤ 0.5 and therefore, vi,k′ /∈ Risky , and R(vi,k′) = 0 by our assumption. There-
fore, it is sufficient to bound the probability of vertices being successfully probed just
for vi,h where h ≥ k and compare it to yi,h the corresponding adaptive probability. We
first show that for a leg i, Li ≥ ε/2 · xi,k.

Li =
∑

t=1

xi,t · μ(vi,t) ≥
k∑

t=1

xi,t · μ(vi,t) ≥ xi,k

k∑

t=1

μ(vi,t) ≥ ε/2 · xi,k, (4)

where the first inequality is by removing positive terms, the second inequality is by
Corollary 4, and the third inequality is by k’s definition.

Finally, the probability that vi,t (for t ≥ k) is successfully probed:

Li

2
· Pr[Ci(1, t) ≤ 1 + ε] ≥ Li

2
· Pr[Ci(1, k − 1) ≤ ε] · Pr[Ci(k, t) ≤ 1]

≥ Li

4
· Pr[Ci(k, t) ≤ 1] ≥ xi,k · ε

8
· Pr[Ci(k, t) ≤ 1] ≥ yi,k · ε

8
,

where the first inequality is by the decomposition of the path, the second inequality
is by Lemma 8 (γ = ε) Pr[Ci(1, k − 1) ≤ ε] ≥ 1/2 since

∑k−1
j=1 μi,j < ε/2 by k’s

definition, the third inequality is by 4 and the last inequality is by (3) in the definition
of ΦI .

4.3 Non-risky Vertices

Lemma 10. For instance I where R(vi,j) = 0, for vi,j ∈ Risky , Procedure
NonRisky(I) outputs a set strategy which gains at least a 1/16 fraction of the opti-
mal strategy gain without budget augmentation.

Proof. Let x be a solution which fulfill the conditions of Corollary 7, and T1, T2

according to the algorithm’s definition. Note that, since xr = 1, therefore T2 is a
single arm. By Observation 5 and by Theorem 3, the optimal gain is bounded by
ΦI,1(2) ≤ ΦI,1(0.5) · 4 ≤ (R(T1) + R(T2)) · 4 ≤ max{R(T1),R(T2)} · 8. Note
that, we have μ(T1) ≤ 0.5, since for vi,t ∈ T1, xi,t = 1 and

∑
xi,tμ(vi,t) ≤ 0.5 by

Φ̂I,1(0.5) definition. Second, note that μ(T2) ≤ 0.5, since it’s a single arm, and we
omitted the risky vertices. Therefore Pr[C(Ti) ≤ 1] ≥ 0.5 and the gain of the strategy
is at least 0.5 · max{R(T1),R(T2)}.

Stochastic Graph Exploration with Limited Resources 183

4.4 Putting Things Together

Theorem 11. For spider graphs instances, and a constant ε < 1, there exist a
(24/ε, 1 + ε)-approximate non-adaptive strategy.

Proof. Clearly, half of the gain is from the risky vertices or from the non-risky vertices.
If most of the gain is from the risky vertices, by Lemma 9, there exists a ε/8 competitive
list strategy using 1 + ε augmentation. In most of the gain is from non-risky vertices,
then by Lemma 10, there exists 1/16 competitive set strategy without augmentation.
Therefore, if γ ∈ [0, 1] fraction of the optimal gain is out of non-risky vertices, the
maximum reward out of these two strategies, is at least max{γ/16, (1 − γ) · ε/8)}
fraction, which is at least 24/ε fraction for any γ.

5 Bounded Weighted Depth Trees Instances

We now focus on the practical scenario where the depth of the tree’s instance is
bounded. We define the weighted depth of a graph as the maximum over all vertices
of the total expected cost of the path from the root to them. Formally, an instance is
(β,B) weighted depth bounded, if for all v ∈ V , μB(D(v)) ≤ β. We prove that for
(B · (1 − ε),B) bounded weighted depth instances, for some constants ε > 0,B ≥ 1,
there exists a constant competitive set strategy with a budget B. Note that for (1 − ε, 1)
bounded weighted-depth instances, our result implies there exists a constant competi-
tive set strategy without budget augmentation, i.e., (O(1), 1)-approximate strategy. We
observe that, given a solution x for Φ̂I,B(t), and let T be the support tree of x, i.e. v ∈ T
if xv > 0, then unlike for spider graphs, μ(T) can be much higher than t); see Exam-
ple 18. Nevertheless, we show that, given a tree T (r ∈ T), such that μ(D(v)) ≤ β (we
omit the subscript B it is clear from the context) for v ∈ T . It is possible to decompose
T to S = {S1, . . . , Sk}, where for all v ∈ T there exists i ∈ [k] such that v ∈ Si. For
all i ∈ [k], Si is a subtree that contains r, and μ(Si) ≤ α, and the number of subtrees is
bounded by k ≤ � 2μ(T)

α−β �. Given a subtree T ′, denote ST ′(v) = {u : v ∈ D(u)} ∩ T ′,
the subtree of v with respect to T ′.

Algorithm TreeDecompose works in iterations. At each iteration, it locates a proper
set of subtrees, where the parent of the root of each of those subtrees is the same. It adds
the subtree containing this set and its entire path to the root to the set of sub-trees, and
removes this subset from the current tree. Specifically, it denotes T ′ as the current sub-
tree. If μ(T ′) ≤ α, then T ′ is a proper sub-tree, and the algorithm adds it to the set of
sub-trees and terminates. Otherwise, it locates a subset of vertices S′, where S′ contains
several sub-trees with the same parent w, and μ(S′) ≥ α−β

2 , μ(D(w) ∪ S′) ≤ α holds.
The algorithm adds D(w) ∪ S′ to the set of sub-trees and omits S′ from the graph. To
locate such S′, in each iteration, it starts from the root and iteratively proceeds to one
of his children u with the maximum value of μ(ST ′(u)), until it reaches a vertex v such
that μ(D(v) ∪ ST ′(v)) > α, the algorithm locates S′ for the vertex w, the parent of the
vertex v.

Lemma 12. Algorithm TreeDecompose outputs S = {S1, . . . , Sk} a feasible tree
decomposition and k ≤ � 2μ(T)

α−β �.

184 I. R. Cohen

Input : A (β, 1) weighted depth bounded instance, edge weights μ, and α > β
Output: A tree decomposition S = {S1, . . . , Sk}, where μ(Si) ≤ α for i ∈ [k]

S ← ∅, T ′ ← T
while μ(T ′) > α do

v ← r
while μ(D(v) ∪ ST ′(v)) > α do

v ← argmax(v,u)∈E μ(ST ′(u))
end
w ← Parent(v)
Let (u1, . . . , uh) such that (w, ui) ∈ T ′ and μ(ST ′(ui)) ≤ μ(ST ′(ui+1)) for
i ∈ [h − 1]

h∗ ← argmin{j ∈ [h] : μ(D(w)) +
∑h

i=j μ(ST ′(ui)) ≤ α}
S′ ← ⋃h

j=h∗ ST ′(uj)

S ← S ∪ {(D(w) ∪ S′)}, T ′ ← T ′ \ S′

end
return S ∪ {T ′}

Algorithm TreeDecompose: Decomposition of a tree to bounded weight rooted
subtrees.

Proof. First, we show that the algorithm is well-defined, and T ′ is a connected subtree
of T and contains the root at any step, which follows from the fact that the algorithm
only omits a vertex with its entire subtree from T ′. Next, we observe that the inner loop
is well-defined, and v would not be a leaf since for any leaf 	, we have μ(D()) +
μ(ST ′()) = μ(D()) ≤ β ≤ α. Therefore, the inner loop always halts at vertex v
= r
such that, for w = Parent(v) then v = uh since v = arg max(w,u)∈E μ(ST ′(u)).
Therefore, μ(D(w)∪ST ′(w)) > α and μ(D(uh)∪ST ′(uh)) ≤ α. Note that, h∗ is well-
defined since for j = h, we have: μ(D(w))+μ(ST ′(uh)) = μ(D(uh)∪ST ′(uh)) ≤ α.
Next, we have that h∗ > 1 since for j = 1 we have μ(D(w)) +

∑h
i=1 μ(ST ′(ei)) =

μ(D(w) ∪ ST ′(w)) > α.
We observe that S = {S1, . . . , Sk} is the tree decomposition of T , since the algo-

rithm terminates only after covering all the vertices. Additionally, each subtree added
to S is (D(w) ∪ S′), where S′ =

⋃h
j=h∗ ST ′(uj) is a collection of subtrees and their

path to the root, and by the condition on h∗, we have μ(D(w) ∪ S′) ≤ α.
In order to complete the proof, we need to show that k ≤ 2μ(T)

α−β . For any iteration
where μ(T ′) > α, let w, v, h∗ be the corresponding values of a main loop iteration, we
have:

α < μ(D(w))+
h∑

i=h∗−1

μ(ST ′(ui)) ≤ β+
h∑

i=h∗−1

μ(ST ′(ui)) ≤ β+2
h∑

i=h∗
μ(ST ′(ui)),

where the first inequality is since h∗ > 1, the second inequality is due to β ≥ D(w)
for all w ∈ T , and the last inequality is a result of μ(ST ′(uh∗−1)) ≤ μ(ST ′(uh∗)) ≤
∑h

i=h∗ μ(ST ′(ui)) since the vertices ui are sorted accordingly. Therefore, the decrease
in μ(T ′) in each such iteration is at least μ(S′) ≥ α−β

2 , the number of iterations (until

Stochastic Graph Exploration with Limited Resources 185

μ(T ′) ≤ α) is at most � 2(μ(T)−α)
α−β �, and the number of subtrees is at most � 2(μ(T)−α)

α−β +

1� ≤ � 2μ(T)
α−β � as required.

Theorem 13. For (B · (1− ε),B) bounded weighted depth instances, where ε > 0,B ≥
1, there exists (ε2

16·(B+1) ,B)-approximate non-adaptive strategy.

Proof. Let x be a solution to ΦI,B(B + 1), which fulfills the conditions of Corollary 7,
and let T1, T2, ζ be the corresponding integral and fractional trees and the fractional tree
assignment value, respectively. Note that, since xr = 1, we have r ∈ T1. Let r2 be the
root of T2, and let T = T2 ∪ D(r2). Assume w.l.o.g. that ζ · R(T) ≥ R(T1). Note that
by Φ̂I definition, we have μ(T) ≤ (B +1)/ζ. By Lemma 12, and α = B · (1− ε/2) we
have a S = {S1, . . . , Sk}, a feasible tree decomposition and k ≤ � 2μ(T)

α−β � ≤ 4·(B+1)
ε·ζ .

Therefore, by choosing a uniform subtree S∗ out of the k subtrees, the probability that
a vertex v ∈ T would be successfully added to the strategy is:

Pr[v ∈ S∗] · Pr[C(S∗) ≤ B] ≥ 1
k

· (1 − α

B) ≥ ε · ζ

4 · (B + 1)
· ε

2
= ζ · ε2

8 · (B + 1)
.

By summing over all the vertices, we find that the non-adaptive gain is at least ζ ·R(T) ·
ε2/(8 · (B + 1)), while the gain of the optimal adaptive policy is at most 2 · ζ · R(T).

6 Examples

In this section, we provide several of examples that demonstrate various tree graph
instances’ properties. LetBe(s, p) denote a Bernoulli distribution, i.e., for a randomized
variable x ∼ Be(s, p), then x = s has a probability p, and x = 0 otherwise. Let 1+

denote a large constant, i.e., 1+ � B. Note that, for e ∼ Be(1+, p), μB(e) = p · B.
First, for completeness, we state again the example in [4], which demonstrates that

any competitive non-adaptive strategy must use budget augmentation even in spider
graphs (Fig. 3).

Example 14. A spider graph with L legs, each leg i contains two vertices, vi,1, and
vi,2, R(vi,1) = 0 and R(vi,2) = 1 for all i ∈ [L], π(vi,1) ∼ Be(2−i, 1 − 1

L), and
π(vi,2) = (1 − 2−i + 2−L, 1).

Claim (Lemma 1 in [4]). The adaptivity gap of stochastic graph exploration is Ω(n)
(without budget augmentation) even in spider graphs.

Proof. Consider the spider graph in Example 14. Note that, for any i
= j ∈ [L], we
have, C({vi,2, vj,2}) > 1 with probability 1; therefore, any strategy would gain at most
1. Given a list strategy, let vi,2 be the first second-level vertex in the list, the probability
that this list strategy will gain is at most Pr[C({vi,1, vi,2} ≤ 1] = 1

L ; therefore, the
expected gain of any non-adaptive strategy is at most 1/L.

On the other hand, an adaptive strategy probes vi,1 sequentially from L to 1 until
C(vi,1) = 0 for some i ∈ [L], and if such i exists, it probes vi,2 and halts. Note that,
in the case that such i exists, this strategy successfully probes vi,2 (with probability
1). Therefore, the expected gain of this strategy is (1 − 1/L)L ≈ 0.36 and the gap is
unbounded.

186 I. R. Cohen

Fig. 3. Instance of spider graph demonstrating that the budget augmentation is necessary, see
Example 14.

The next example demonstrates that even with budget augmentation, a set strategy
is not competitive versus an adaptive strategy.

Fig. 4. An example demonstrating that a set strategy cannot approximate an adaptive strategy
even with budget augmentation.

Example 15. A spider graph with 1 legs, the leg contains k vertices, v1,j for j ∈ [k].
R(v1,k) = 2k, and π(vi,1) ∼ Be(1+, 1/2). See also Fig. 4.

Claim. The gap between a set strategy and an adaptive strategy is unbounded, even
when the set strategy uses a constant budget augmentation.

Proof. Consider the graph in Example 15. The probability that a list strategy which
probes the single leg will successfully probe vertex vi,h is 2−h; therefore its expected
gain is

∑k
h=1 2−h ·2h = k. While a set strategy which contains vertices with a prefix of

v1,j for j ∈ [k] would gain
∑j

h=1 2h ≤ 2j+1 and the probability it gains is 2−j , there
it’s expected gain is at most 2j+1 · 2−j = 2 and the gap is unbounded.

Example 16. A spider graph with 1 legs, the leg contains 2 vertices, v1,1 for and v1,2.
R(v1,1) = 0,R(v1,2) = 1, π(v1,1) ∼ Be(1+, 1− 1/k), π(v1,2) ∼ Be(0, 1). The value
of Φ̂I,1(1) = 1, while the value of any adaptive policy (even with budget augmentation)
is at most 1/k.

Stochastic Graph Exploration with Limited Resources 187

v1

u1

v2

u2

v3 vk

uk

(1
, 1
)

(1
, 1
)

(1
, 1
)

(1+, 1 − 1
k

) (1+, 1 − 1
k

)

Fig. 5. An example demonstrates that for general instances, there is a non-constant gap between
the value of the solution of ΦI and the gain of an adaptive strategy, even with a constant budget
augmentation.

r

v

u2u1 vk−1

(0.5
, 1)

(0.5, 1)

(0
.5
, 1

)

(0.5, 1)

Fig. 6. An instance where Φ̂I has an unbounded weight support tree.

Next, we demonstrate that for general instances, we cannot use the value of the solu-
tion of ΦI for the lower bound of an adaptive strategy, even with budget augmentation.

Example 17. Consider a graph with 2 · k vertices, v1 = r, vi, ui for i ∈ [k],
Parent(vi) = vi−1), Parent(ui) = vi, and R(ui) = ki−1,R(vi) = 0, π(vi) ∼
Be(1+, 1 − 1/k), π(ui) ∼ Be(1, 1). See Fig. 5

Claim. There exists an instance I, such that the gap between ΦI,B(2) and the value of
any adaptive policy on I is unbounded, even with budget augmentation.

Proof. Consider the instance of Example 17; first note that for i ∈ [k], xvi
= k−i+1/2

and yui
= xui

= k−i/2 is a feasible solution and its value is
∑k

i=1 yui
· ki−1 =

∑k
i=1 k−i/2 · ki−1 = k/2. Considering an adaptive strategy with budget B, we can

assume w.l.o.g that it is deterministic, since the only random variables are C(vi), and
if C(vi)
= 0, the algorithm must halt. Let h1, . . . , hB, where the algorithm decides to
probe uhi

for i ∈ B (clearly there must be at most B since the cost of any of them
is deterministically 1). The probability it gains, uhj

, is at most kj , and therefore it’s

expected gain is at most
∑B

j=1 k−j · kj = B, while as we have shown ΦI,B ≥ ΦI,1 =
k/2.

188 I. R. Cohen

Example 18. Consider a graph with k+1 vertices, r, v, ui for i ∈ [k−1], Parent(v) =
r, Parent(ui) = v, and R(ui) = 1,R(v) = 0, π(vi) ∼ Be(0.5, 1), π(ui) ∼ Be(1, 1).
See Fig. 6. The optimal solution for Φ̂I(2) will set xv = xui

= 4/k, and therefore
μ(T) = (k − 1)/2.

References

1. Adamczyk, M.: Improved analysis of the greedy algorithm for stochastic matching. Inf. Pro-
cess. Lett. 111(15), 731–737 (2011)

2. Albers, S., Eckl, A.: Explorable uncertainty in scheduling with non-uniform testing times.
In: Kaklamanis, C., Levin, A. (eds.) WAOA 2020. LNCS, vol. 12806, pp. 127–142. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-80879-2_9

3. Albers, S., Eckl, A.: Scheduling with testing on multiple identical parallel machines. In:
Lubiw, A., Salavatipour, M. (eds.) WADS 2021. LNCS, vol. 12808, pp. 29–42. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-83508-8_3

4. Anagnostopoulos, A., Cohen, I.R., Leonardi, S., Lacki, J.: Stochastic graph exploration. In:
46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

5. Aouad, A., Ji, J., Shaposhnik, Y.: Pandora’s box problem with sequential inspections. SSRN
3726167 (2020)

6. Bampis, E., Dürr, C., Erlebach, T., Santos de Lima, M., Megow, N., Schlöter, J.: Orienting
(hyper)graphs under explorable stochastic uncertainty. In: Mutzel, P., Pagh, R., Herman, G.
(eds.) 29th Annual European Symposium on Algorithms, ESA 2021, Lisbon, Portugal, 6–8
September 2021 (Virtual Conference). LIPIcs, vol. 204 pp. 10:1–10:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2021)

7. Bansal, N., Gupta, A., Li, J., Mestre, J., Nagarajan, V., Rudra, A.: When LP is the cure for
your matching woes: improved bounds for stochastic matchings. Algorithmica 63(4), 733–
762 (2012)

8. Bansal, N., Nagarajan, V.: On the adaptivity gap of stochastic orienteering. In: Lee, J., Vygen,
J. (eds.) IPCO 2014. LNCS, vol. 8494, pp. 114–125. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-07557-0_10

9. Beyhaghi, H., Kleinberg, R.: Pandora’s problem with nonobligatory inspection. In: Proceed-
ings of the 2019 ACM Conference on Economics and Computation, pp. 131–132 (2019)

10. Bhalgat, A., Goel, A., Khanna, S.: Improved approximation results for stochastic knapsack
problems. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 1647–1665. SIAM (2011)

11. Boodaghians, S., Fusco, F., Lazos, P., Leonardi, S.: Pandora’s box problem with order con-
straints. In: Proceedings of the 21st ACM Conference on Economics and Computation, pp.
439–458 (2020)

12. Chawla, S., Gergatsouli, E., Teng, Y., Tzamos, C., Zhang, R.: Pandora’s box with correla-
tions: learning and approximation. In: 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS), pp. 1214–1225. IEEE (2020)

13. Chen, N., Immorlica, N., Karlin, A.R., Mahdian, M., Rudra, A.: Approximating matches
made in heaven. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 266–278. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02927-1_23

14. Chugg, B., Maehara, T.: Submodular stochastic probing with prices. In: 2019 6th Interna-
tional Conference on Control, Decision and Information Technologies (CoDIT), pp. 60–66.
IEEE (2019)

https://doi.org/10.1007/978-3-030-80879-2_9
https://doi.org/10.1007/978-3-030-83508-8_3
https://doi.org/10.1007/978-3-319-07557-0_10
https://doi.org/10.1007/978-3-319-07557-0_10
https://doi.org/10.1007/978-3-642-02927-1_23

Stochastic Graph Exploration with Limited Resources 189

15. Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack problem:
the benefit of adaptivity. Math. Oper. Res. 33(4), 945–964 (2008)

16. Dürr, C., Erlebach, T., Megow, N., Meißner, J.: An adversarial model for scheduling with
testing. Algorithmica 82(12), 3630–3675 (2020)

17. Guha, S., Munagala, K.: Approximation algorithms for budgeted learning problems. In: Pro-
ceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC
2007, San Diego, California, USA, pp. 104–113. ACM, New York (2007)

18. Gupta, A., Krishnaswamy, R., Molinaro, M., Ravi, R.: Approximation algorithms for corre-
lated knapsacks and non-martingale bandits. In: IEEE 52nd Annual Symposium on Founda-
tions of Computer Science, FOCS 2011, Palm Springs, CA, USA, 22–25 October 2011, pp.
827–836 (2011)

19. Gupta, A., Krishnaswamy, R., Nagarajan, V., Ravi, R.: Running errands in time: approxima-
tion algorithms for stochastic orienteering. Math. Oper. Res. 40(1), 56–79 (2015)

20. Gupta, A., Nagarajan, V.: A stochastic probing problem with applications. In: Goemans, M.,
Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 205–216. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36694-9_18

21. Gupta, A., Nagarajan, V., Singla, S.: Algorithms and adaptivity gaps for stochastic probing.
In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2016, Arlington, Virginia, pp. 1731–1747. Society for Industrial and Applied
Mathematics, Philadelphia (2016)

22. Jiang, H., Li, J., Liu, D., Singla, S.: Algorithms and adaptivity gaps for stochastic k-TSP.
arXiv preprint arXiv:1911.02506 (2019)

23. Laishram, R., Areekijseree, K., Soundarajan, S.: Predicted max degree sampling: sampling in
directed networks to maximize node coverage through crawling. In: 2017 IEEE Conference
on Computer Communications Workshops (INFOCOMWKSHPS), pp. 940–945 (2017)

24. Ma, W.: Improvements and generalizations of stochastic knapsack and multi-armed bandit
approximation algorithms. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 1154–1163. SIAM (2014)

25. Singla, S.: The price of information in combinatorial optimization. In: Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2523–2532.
SIAM (2018)

26. Soundarajan, S., Eliassi-Rad, T., Gallagher, B., Pinar, A.: MaxReach: reducing network
incompleteness through node probes. In: 2016 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM), pp. 152–157 (2016)

27. Soundarajan, S., Eliassi-Rad, T., Gallagher, B., Pinar, A.: εWGXX: adaptive edge probing
for enhancing incomplete networks. In: Proceedings of the 2017 ACM onWeb Science Con-
ference, WebSci 2017, New York, NY, USA, pp. 161–170. ACM, New York (2017)

28. Thayer, T.C., Carpin, S.: An adaptive method for the stochastic orienteering problem. IEEE
Robot. Autom. Lett. 6(2), 4185–4192 (2021)

29. Wang, W., Gupta, A., Williams, J.: Probing to minimize. arXiv preprint arXiv:2111.01955
(2021)

30. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393(6684), 440–442 (1998)

https://doi.org/10.1007/978-3-642-36694-9_18
http://arxiv.org/abs/1911.02506
http://arxiv.org/abs/2111.01955

Adaptivity Gaps for the Stochastic
Boolean Function Evaluation Problem

Lisa Hellerstein1, Devorah Kletenik2, Naifeng Liu3, and R. Teal Witter1(B)

1 NYU Tandon, Brooklyn, NY 11201, USA
rtealwitter@nyu.edu

2 Brooklyn College, Brooklyn, NY 11210, USA
3 CUNY Graduate Center, New York, NY 10016, USA

Abstract. We consider the Stochastic Boolean Function Evaluation
(SBFE) problem where the task is to efficiently evaluate a known Boolean
function f on an unknown bit string x of length n. We determine f(x)
by sequentially testing the variables of x, each of which is associated
with a cost of testing and an independent probability of being true. If
a strategy for solving the problem is adaptive in the sense that its next
test can depend on the outcomes of previous tests, it has lower expected
cost but may take up to exponential space to store. In contrast, a non-
adaptive strategy may have higher expected cost but can be stored in
linear space and benefit from parallel resources. The adaptivity gap, the
ratio between the expected cost of the optimal non-adaptive and adap-
tive strategies, is a measure of the benefit of adaptivity. We present lower
bounds on the adaptivity gap for the SBFE problem for popular classes of
Boolean functions, including read-once DNF formulas, read-once formu-
las, and general DNFs. Our bounds range from Ω(log n) to Ω(n/ log n),
contrasting with recent O(1) gaps shown for symmetric functions and
linear threshold functions.

1 Introduction

We consider the question of determining adaptivity gaps for the Stochastic
Boolean Function Evaluation (SBFE) problem, for different classes of Boolean
formulas. In an SBFE problem, we are given a (representation of a) Boolean
function f : {0, 1}n → {0, 1}, a positive cost vector c = [c1, . . . , cn], and a prob-
ability vector p = [p1, . . . , pn]. The problem is to determine the value f(x) on
an initially unknown random input x ∈ {0, 1}n. The value of each xi can only
be determined by performing a test, which incurs a cost of ci. Each xi is equal
to 1 (is true) with independent probability pi. Tests are performed sequentially
and continue until f(x) can be determined. We say f(x) is determined by a set
of tests if f(x) = f(x′) for all x′ ∈ {0, 1}n such that x′

i = xi for every i in the
set of tests.

For example, if f(x) = x1 ∨ . . . ∨ xn then testing continues until a test is
performed on some xi such that xi = 1 at which point we know f(x) = 1, or
until all n tests have been performed with outcome xi = 0 for each xi so we
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Chalermsook and B. Laekhanukit (Eds.): WAOA 2022, LNCS 13538, pp. 190–210, 2022.
https://doi.org/10.1007/978-3-031-18367-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18367-6_10&domain=pdf
https://doi.org/10.1007/978-3-031-18367-6_10

Adaptivity Gaps for the Stochastic Boolean Function Evaluation Problem 191

know f(x) = 0. The problem is to determine the order to perform tests that
minimizes the total expected cost of the tests.

We will call a testing order a strategy which we can think of as a decision tree
for evaluating f . A strategy can be adaptive, meaning that the choice of the next
test xi can depend on the outcome of previous tests. In some practical settings,
however, it is desirable to consider only non-adaptive strategies. Non-adaptive
strategies often take up less space than adaptive strategies, and they may be
able to be evaluated more quickly if tests can be performed in parallel [20], such
as in the problem of detecting network faults [23] or in group testing for viruses,
such as the coronavirus [28]. A non-adaptive testing strategy is a permutation of
the tests where testing continues in the order specified by the permutation until
the value of f(x) can be determined from the outcomes of the tests performed
so far. A non-adaptive strategy also corresponds to a decision tree where all
non-leaf nodes on the same level contain the same test xi.

The adaptivity gap measures how much benefit can be obtained by using an
adaptive strategy. Consider a class F of n-variable functions f : {0, 1}n → {0, 1}.
Let OPTN (f, c, p) be the expected evaluation cost of the optimal non-adaptive
strategy on function f under costs c and probabilities p. Similarly, OPTA(f, c, p)
is the expected evaluation cost of the optimal adaptive strategy on f under c
and p. The adaptivity gap of the function class F is

max
f∈F

sup
c,p

OPTN (f, c, p)
OPTA(f, c, p)

.

The SBFE problem for a class of Boolean formulas F restricts the evaluated
f to be a member of F . In this paper we prove bounds on the adaptivity gaps for
the SBFE problem on read-once DNF formulas, DNF formulas, and read-once
formulas. (See Sect. 1.3 for definitions.) A summary of our results can be found
in Table 1.

All the bounds in the table have a dependence on n, meaning that none of
the listed SBFE problems has a constant adaptivity gap. This contrasts with
recent work of Ghuge et al. [14], which shows that the adaptivity gaps for the
SBFE problem for symmetric Boolean functions and linear threshold functions
are O(1).

For any SBFE problem, the non-adaptive strategy of testing the xi in increas-
ing order of ci has an expected cost that is within a factor of n of the optimal
adaptive strategy [25]. Thus n is an upper bound on the adaptivity gap for all
SBFE problems.

Outline: We present our results on formula classes in increasing order of gener-
ality. In Sect. 2, we warm up with a variety of results on read-once DNF formulas
in different settings. In Sect. 3, we prove our main technical result for read-once
formulas, drawing on branching process identities and concentration inequalities.
In Sect. 4, we prove our most general results on DNF formulas (the bounds also
apply to the restricted class of DNF formulas with a linear number of terms).
Note that we state our lower bound results in the most restricted context because
they of course apply to more general settings. Due to space constraints, we defer
some proofs to Appendix A.

192 L. Hellerstein et al.

Table 1. A summary of our results. We also prove an O(
√

n) upper bound for tribes
formulas i.e., read-once DNFs with unit costs where every term has the same number
of variables. We say all probabilities are equal if p1 = p2 = . . . = pn.

Formula class Adaptivity gap

Read-once DNF Θ(log n) for unit costs, uniform distribution

Ω(
√

n) for unit costs

Ω(n1−ε/ log n) for uniform distribution

Read-once Ω(ε3n1−2ε/ ln(2)) for unit costs, equal probabilities

DNF Ω(n/ log n) for unit costs, uniform distribution

Θ(n) for uniform distribution

1.1 Connection to st-Connectivity in Uncertain Networks

Our result for read-once formulas has implications for a problem of determining
st-connectivity in an uncertain network, studied by Fu et al. [13]. The input is a
multi-graph with a source node s and a destination node t. Each edge corresponds
to a variable xi indicating whether it is usable, which is true with probability
pi. Testing the usability of edge i costs ci. The st-connectivity function for the
multi-graph is true if and only if there is a path of usable edges from s to t. The
problem is to find a strategy to evaluate the st-connectivity function that has
minimum expected cost.

The st-connectivity function associated with a multi-graph can be repre-
sented by a read-once formula if and only if the multi-graph is a two-terminal
series-parallel graph. This type of graph has two distinguished nodes, s and t, and
is formed by recursively combining disjoint series-parallel graphs either in series,
or in parallel (see [12] for the precise definitions).1 Fu et al. performed exper-
iments with both adaptive and non-adaptive strategies for this problem, com-
paring their performance, but did not prove theoretical adaptivity gap bounds.
Since the st-connectivity function on a series-parallel graph is a read-once for-
mula, our lower bound on the adaptivity gap for read-once formulas applies to
the problem of st-connectivity.

1.2 Related Work

It is well-known that the SBFE problem for the Boolean OR function given by
f(x) = x1∨. . .∨xn has a simple solution: test the variables xi in increasing order
of the ratio ci/pi until a test reveals a variable set to true, or until all variables

1 The term series-parallel circuits (systems) refers to a set of parallel circuits that are
connected in series (see, e.g., [11,31]). Viewed as graphs, they correspond to the sub-
set of two-terminal series-parallel graphs whose st-connectivity functions correspond
to read-once CNF formulas. We note that Kowshik used the term “series-parallel
graph” in a non-standard way to refer only to this subset; Fu et al. in citing Kow-
shik, used the term the same way [13,27].

Adaptivity Gaps for the Stochastic Boolean Function Evaluation Problem 193

are tested and found to be false (cf. [30]). This strategy is non-adaptive, meaning
that the SBFE problem for the Boolean OR function has an adaptivity gap of
1. That is, there is no benefit to adaptivity.

Gkenosis et al. [16] introduced the Stochastic Score Classification problem,
which generalizes the SBFE problem for both symmetric Boolean functions and
for linear threshold functions. Ghuge et al. [14] showed that the Stochastic Score
Classification problem has an adaptivity gap of O(1). In the unit-cost case,
Gkenosis et al. showed the gap is at most 4 for symmetric Boolean functions,
and at most φ (the golden ratio) for the not-all-equal function [16].

Adaptivity gaps were introduced by Dean et al. [7] in the study of the stochas-
tic knapsack problem which, in contrast to the SBFE problem for Boolean func-
tions, is a maximization problem. It has an adaptivity gap of 4 [7,9]. Adaptivity
gaps have also been shown for other stochastic maximization problems (e.g.,
[2,5,8,19,24]). Notably, the problem of maximizing a monotone submodular
function with stochastic inputs, subject to any class of prefix-closed constraints,
was shown to have an O(1) adaptivity gap [5,20].

Adaptivity gaps have also been shown for stochastic covering problems,
which, like SBFE, are minimization problems. Goemans et al. [17] showed that
the adaptivity gap for the Stochastic Set Cover problem, in which each item can
only be chosen once, is Ω(d) and O(d2), where d is the size of the target set to
be covered. If the items can be used repeatedly, the adaptivity gap is Θ(log d).

Agarwal et al. [1] and Ghuge et al. [15] proved bounds of Ω(Q) and O(Q log Q)
respectively, on the adaptivity gap for the more abstract Stochastic Submodular
Cover Problem in which each item can only be used once. Applied to the special
case of Stochastic Set Cover, the upper bound is O(d log d), which improves the
above O(d2) bound. They also gave bounds parameterized by the number of
rounds of adaptivity allowed. We note that, as shown by Deshpande et al. [10],
one approach to solving SBFE problems is to reduce them to special cases of
Stochastic Submodular Cover. However, this approach does not seem to have
interesting implications for SBFE problem adaptivity gaps.

1.3 Preliminaries

Consider a Boolean function f : {0, 1}n → {0, 1}, a positive cost vector c =
[c1, . . . , cn], and probability vector p = [p1, . . . , pn]. We assume ci > 0 and 0 <
pi < 1 for i ∈ [n] where [n] denotes the set {1, . . . , n}. Let strategy S be a
decision tree for evaluating f(x) on an unknown input x ∈ {0, 1}n. We define
costc(f, x, S) as the total cost of the variables tested by S on input x until
f(x) is determined. We say x ∼ p if Pr(x) =

∏
i:xi=1 pi

∏
i:xi=0(1 − pi). Then

costc,p(f, S) := Ex∼p[costc(f, x, S)] is the expected evaluation cost of strategy S
when x is drawn according to the product distribution induced by p.

For fixed n, let A be the set of adaptive strategies on n variables and N
be the set of non-adaptive strategies on n variables. We are interested in the
quantities

OPTA(f, c, p) := min
S∈A

costc,p(f, S) and OPTN (f, c, p) := min
S∈N

costc,p(f, S).

194 L. Hellerstein et al.

We will omit c and p from the notation when the costs and probabilities are clear
from context. A (Boolean) read-once formula is a tree, each of whose internal
nodes are labeled either ∨ or ∧. The internal nodes have two or more children.
Each leaf is labeled with a Boolean variable xi ∈ {x1, . . . , xn}. The formula
computes a Boolean function in the usual way.2 A (Boolean) DNF formula is a
formula of the form T1 ∨ T2 ∨ . . . Tm for some m ≥ 1, such that each term Ti

is the conjunction (∧) of literals. A literal is a variable xi or a negated variable
¬xi. The DNF formula is read-once if distinct terms contain disjoint sets of
variables, without negations. Read-once DNF formulas whose terms all contain
the same number w of literals are sometimes known as tribes formulas of width
w (cf. [29]).

2 Warm Up: Adaptivity Gaps for Read-Once DNFs

Let f : {0, 1}n → {0, 1} be a read-once DNF formula. Boros and Ünyülurt [3]
showed that the following approach gives an optimal adaptive strategy for
evaluating f (this has been rediscovered in later papers [18,26,27]). Let f =
T1 ∨ T2 . . . ∨ Tk be a DNF formula with k terms. For each term Tj , let �(j) be
the number of variables in term Tj . Order the variables of Tj as xj1 , xj2 , . . . xj�(j)

in non-decreasing order of the ratio ci/(1 − pi), i.e., so that cj1/(1 − pj1) ≤
cj2/(1−pj2) ≤ . . . ≤ cj�(j)/(1−pj�(j)). For evaluating the single term Tj , an opti-
mal strategy tests the variables in Tj sequentially, in the order xj1 , xj2 , . . . xj�(j) ,
until a variable is found to be false, or until all variables are tested and found
to be true.

Denote the probability of the term evaluating to true as P (Tj) =
∏�(j)

i=1 pji

and the expected cost of this evaluation of the term as

C(Tj) =
�(j)∑

i=1

(
i∑

k=1

cjk

i−1∏

r=1

pjr
).

An optimal algorithm for evaluating f applies the above strategy sequentially to
the terms T of f , in non-decreasing order of the ratio C(T)/P (T), until either
some term is found to be satisfied by x, so f(x) = 1, or all terms have been
evaluated and found to be falsified by x, so f(x) = 0. We will use this optimal
adaptive strategy in the remainder of the section.

In what follows, we will frequently describe non-adaptive strategies as per-
forming the n possible tests in a particular order. We mean by this that the
permutation representing the strategy lists the tests in this order. The testing
stops when the value of f can be determined.

2 Some definitions of a read-once formula allow negations in the internal nodes of the
formula. By DeMorgan’s laws, these negations can be “pushed” into the leaves of
the formula, resulting in a formula whose internal nodes are ∨ and ∧, such that each
variable xi appears in at most one leaf.

Adaptivity Gaps for the Stochastic Boolean Function Evaluation Problem 195

Algorithm 1: Evaluating a read-once DNF where each variable has unit
cost and uniform distribution.
Input : n > 0, read-once DNF f : {0, 1}n → {0, 1} with m terms
Output: π // O(log n)-approximation non-adaptive strategy for f
π ← [] // empty list

for i = 1 to m do
if |Ti| ≤ 2 log n then // Ti is ith shortest term in f

π ← π + all variables in Ti

else
π ← π + first 2 log n variables in Ti

end

end
π ← π + remaining variables not in π

2.1 Unit Costs and the Uniform Distribution

We begin by showing that the adaptivity gap for read-once DNFs, in the case
of unit costs and the uniform distribution, is at most O(log n).

Theorem 1. Let f : {0, 1}n → {0, 1} be a read-once DNF formula. For unit
costs and the uniform distribution, there is a non-adaptive strategy S such that
cost(f, S) ≤ O(log n) · OPTA(f).

Proof (Proof Sketch). Using the characterization of the optimal adaptive strat-
egy due to Boros and Ünyülurt [3], we show that Algorithm 1 gives a non-
adaptive strategy that has expected cost at most O(log n) times the optimal
adaptive strategy. The algorithm crucially relies on the observation that the
optimal adaptive algorithm tests terms in non-decreasing order of length for
unit costs and the uniform distribution. To see this, observe C(T)/P (T) is non-
decreasing when terms are ordered by length in this setting. For terms with
length at most 2 log n, we can test every variable without paying more than
O(log n) times the optimal adaptive strategy. For terms with length greater
than 2 log n, we can test 2 log n variables and only need to continue testing with
probability 1/n2.

We complement Theorem 1 with a matching lower bound. We prove the
theorem by exhibiting a read-once DNF with

√
n identical terms. We upper

bound the optimal adaptive strategy and argue any non-adaptive strategy has
to make log n tests per term to verify f(x) = 0 which occurs with constant
probability.

Theorem 2. Let f : {0, 1}n → {0, 1} be a read-once DNF formula. For unit
costs and the uniform distribution, OPTN (f) ≥ Ω(log n) · OPTA(f).

2.2 Unit Costs and Arbitrary Probabilities

We give an upper bound of the adaptivity gap for read-once DNF formulas with
unit costs and arbitrary probabilities in the special case where all terms have

196 L. Hellerstein et al.

the same number of variables. This is known as a tribes formula [29]. Let the
number of terms be m. We now describe two non-adaptive strategies which yield
a n/m-approximation and a m-approximation, respectively. Then, by choosing
the non-adaptive strategy based on the number of terms m, we are guaranteed
a min{n/m,m} ≤ O(

√
n)-approximation.

Lemma 1. Consider a read-once DNF f : {0, 1}n → {0, 1} where each term has
the same number of variables. For unit costs and arbitrary probabilities, there is
a non-adaptive strategy S ∈ N such that cost(f, S) ≤ n/m · OPTA(f).

Proof (Proof of Lemma 1). Consider a random input x and the optimal adaptive
strategy described at the start of this section. If f(x) = 0, the optimal adaptive
strategy must certify that each term is 0 which requires at least m tests. Since
any non-adaptive strategy will make at most n tests, the ratio between the cost
incurred on x by a non-adaptive strategy, and by the optimal adaptive strategy,
is at most n/m. Otherwise, if f(x) = 1, the optimal adaptive strategy will certify
that a term is true after testing some number of false terms. Now consider the
non-adaptive version of this optimal adaptive strategy which tests terms in the
same fixed order but must test all variables in a term before proceeding to the
next term. For each false term that the optimal adaptive strategy tests, the
non-adaptive strategy will test every variable for a total of n/m tests. Since
the optimal adaptive strategy must make at least one test per false term, the
ratio between the cost incurred on x by the non-adaptive strategy, and the cost
incurred by the optimal strategy, is at most n/m. Since the ratio n/m holds for
all x, the lemma follows.

Lemma 2. Consider a read-once DNF f : {0, 1}n → {0, 1} where each term has
the same number of variables. For unit costs and arbitrary probabilities, there is
a non-adaptive strategy S ∈ N with expected cost cost(f, S) ≤ m · OPTA(f).

Proof (Proof of Lemma 2). Fix a random input x. If f(x) = 0, the optimal
adaptive strategy certifies that every term is false. Let Ci be the number of
tests it makes until finding a false variable on the ith term. Consider the non-
adaptive “round-robin” strategy which progresses in rounds, making one test in
each term per round. Within a term, the non-adaptive strategy tests variables
in the same fixed order as the optimal adaptive strategy. Then the cost of the
non-adaptive strategy is m · maxi Ci whereas the cost of the optimal adaptive
strategy is

∑m
i=1 Ci. It follows that the adaptivity gap is at most m. Otherwise,

if f(x) = 1, the optimal adaptive strategy must certify that a term is true by
making at least n/m tests. Any non-adaptive strategy will make at most n tests
so the adaptivity gap is at most m.

Together, the O(n/m)- and O(m)-approximations imply the following result.

Theorem 3. Let f : {0, 1}n → {0, 1} be a read-once DNF formula where each
term has the same number of variables. For unit costs and arbitrary probabilities,
there is a non-adaptive strategy S ∈ N with cost(f, S) ≤ O(

√
n) · OPTA(f).

Adaptivity Gaps for the Stochastic Boolean Function Evaluation Problem 197

We complement Theorem 3 with a matching lower bound. We prove the
theorem by exhibiting a read-once DNF with 2

√
n identical terms. By making

one special variable in each term have a low probability of being true and arguing
it must always be tested first, the non-adaptive strategy has to search at random
for which special variable is true when every other special variable is false which
happens with constant probability.

Theorem 4. Let f : {0, 1}n → {0, 1} be a read-once DNF formula. For unit
costs and arbitrary probabilities, OPTN (f) ≥ Ω(

√
n) · OPTA(f).

2.3 Arbitrary Costs and the Uniform Distribution

We prove Theorem 5 by exhibiting a read-once DNF with 2� terms each of length
�. Within each term, the cost of each variable increases geometrically with a ratio
of 2. The challenge is choosing � so that 2�� = n. We accomplish this by using a
modified Lambert W function [6] which is how we calculate nε.

Theorem 5. For all ε > 0, there exists nε > 0 such that the following holds
for all read-once DNF formulas f : {0, 1}n → {0, 1} where n > nε: There
exists a cost assignment such that for the uniform distribution, OPTN (f) ≥
Ω(n1−ε/ log n) · OPTA(f).

3 Main Result: Read-Once Formulas

Theorem 6. Fix ε > 0. There is a read-once formula f : {0, 1}n → {0, 1}, such
that for unit costs and pi = 1+ε

2 for all i ∈ [n], OPTN (f) ≥ Ω
(
ε3n1−2ε/ log 2

) ·
OPTA(f).

Before we prove Theorem 6, we describe the read-once formula f and present
the technical lemmas we use in the proof. Without loss of generality, assume
n = 2 · 2d − 2 for some positive integer d. We define the function f(x) on inputs
x ∈ {0, 1}n in terms of a binary tree with depth d. The edges of the tree are
numbered 1 through n, and variable xi corresponds to edge i. Each variable
xi has a 1+ε

2 probability of being true. Say that a leaf of the tree is “alive” if
xi = 1 for all edges i on the path from the root to the leaf. We define f(x) = 1 if
and only if at least one leaf of the tree is alive. A strategy for evaluating f will
continue testing until it can certify that there is at least one alive leaf, or that
no alive leaf exists (Fig. 1).

Now consider the multi-graph that is produced from the tree by merging
all leaves into a single node. The function f is the st-connectivity function of
this multi-graph. It is easy to show, by induction on the depth of the tree, that
the multi-graph is two-terminal series-parallel, with s the root, and t the node
produced by merging the leaves of the tree. Thus f is computed by a read-once
formula.

We refer to the edges of the tree that join a leaf to its parent as leaf edges,
and the other edges as internal edges. We say that a non-adaptive strategy S

198 L. Hellerstein et al.

x1 = 1

x2 = 0

x3 = 1 x4 = 1

x5 = 1

x6 = 1 x7 = 0

x8 = 0

x9 = 0

x10 = 0 x11 = 1

x12 = 0

x13 = 1 x14 = 0

Fig. 1. The binary tree corresponding to the read-once formula we construct when
n = 14. In particular, f(x) = (x1 ∧ ((x2 ∧ (x3 ∨ x4)) ∨ (x5 ∧ (x6 ∨ x7)))) ∨ (x8 ∧ ((x9 ∧
(x10 ∨ x11)) ∨ (x12 ∧ (x13 ∨ x14)))). Notice that f(x) = 1 for this x because the third
leaf from the left is alive (all its ancestors are true).

is leaf-last if it first tests all non-leaf edges of the tree, and then tests the leaf
edges.

In the proof of Theorem 6, we consider an alternative cost assignment where
we pay unit costs for the tests on leaf edges, as usual, but tests on internal edges
are free. The expected cost of a strategy under the usual unit cost assignment
is clearly lower bounded by its expected cost when internal edges are free. Note
that when internal edges are free, there is no disadvantage in performing all the
tests on internal edges first, so there is an optimal non-adaptive strategy which is
leaf-last in the sense that all the leaf edges appear last. Our first technical lemma
describes a property of a leaf-last strategy. We defer the proof of this lemma, and
of the ones that follow, to the end of this section. In all of the lemma statements,
we assume f is as just described, and expected costs are with respect to unit
costs and test probabilities pi = 1+ε

2 . We use L to denote the number of leaves
in the tree.

Lemma 3. There exists a leaf-last non-adaptive strategy S for evaluating f
which, conditioned on the event that there is at least one alive leaf, has minimum
expected cost when internal edges are free relative to all non-adaptive strategies.
Further, for any such S and any � ∈ [L − 1], conditioned on the existence of at
least one alive leaf, the probability that S first finds an alive leaf on the �th leaf
test is at least the probability S first finds an alive leaf on the (� + 1)st leaf test.

The next lemma gives us an inequality that we will use to lower bound the
cost of the optimal non-adaptive strategy.

Adaptivity Gaps for the Stochastic Boolean Function Evaluation Problem 199

Lemma 4. Let L be a positive integer and p1 ≥ p2 ≥ . . . ≥ pL be non-negative
real numbers. Now let p ≥ p1 and define L′ =
∑L

�=1 p�/p�. Then ∑L
�=1 �p� ≥

∑L′

�=1 �p.

Our analysis depends on there being at least constant probability that f(x) =
1, or equivalently, that there is at least one alive leaf. The next lemma assures
us that this is indeed the case. The proof of the lemma depends on our choice
of having each pi be slightly larger than 1/2; it would not hold otherwise.

Lemma 5. With probability at least ε, there is at least one alive leaf in the
binary tree representing f .

With these key lemmas in hand, we prove Theorem 6.

Proof (Proof of Theorem 6). We will show that the adaptivity gap is large.
Intuitively, we rely on the fact that if there is at least one alive leaf, then an
adaptive strategy can find an alive leaf cheaply, by beginning at the root of
the tree and moving downward only along edges that are alive. In contrast, a
non-adaptive strategy cannot stop searching along “dead” branches. However,
it is not immediately clear that the cost of the non-adaptive strategy is high
because there are conditional dependencies between the probabilities that two
leaves with the same ancestor(s) are alive. To prove the desired result, we need to
show that, despite these dependencies, the optimal non-adaptive strategy must
have high expected cost.

We begin by showing that the expected cost of any non-adaptive strategy is
at least ε2

16n1− ε
log 2 . We want to lower bound the expected cost of the optimal

strategy OPTN (f):

min
S∈N

Ex[cost(f, x, S)] ≥ min
S

E[costL(f, x, S)] = min
S′

E[costL(f, x, S′)] (1)

where costL(f, x, S) is the number of leaf tests S makes on x until f(x) is deter-
mined, and S′ is a leaf-last strategy. Then

(1) = min
S′

⎛

⎝
∑

x:f(x)=1

Pr(x) · costL(f, x, S′) +
∑

x:f(x)=0

Pr(x) · costL(f, x, S′)

⎞

⎠

≥ min
S′

∑

x:f(x)=1

Pr(x) · costL(f, x, S′)

= min
S′

L∑

�=1

�Pr(S′ first finds alive leaf on �th leaf test)

where L = 2d is the number of leaves in the binary tree. Initially, all leaves have
a

(
1+ε
2

)d probability of being alive where d = log2((n + 2)/2). By Lemma 3, the
probability that the next leaf is alive cannot increase as the optimal non-adaptive
strategy S∗ performs its test. Set

p =
(

1 + ε

2

)d

200 L. Hellerstein et al.

and p� = Pr(S∗ first finds alive leaf on �th test). Therefore, Lemma 4 with p
and p� tells us that

L∑

�=1

�p� ≥
L′
∑

�=1

�

(
1 + ε

2

)d

≥
(

1 + ε

2

)d
ε2

8
(
1+ε
2

)2d
≥ ε2

8(n+2
2)log2(

1+ε
2)

≥ ε2

16
n1− ε

log 2

(2)

where we use the inequality that L′ ≥ ε/(2
(
1+ε
2

)d). To see this, recall that
∑L

�=1 p�/p ≥ L′ and, since the right-hand side is greater than 1, 2L′ ≥
∑L

�=1 p�/p. By Lemma 5,
∑L

�=1 p� ≥ ε so L′ ≥ ε/(2
(
1+ε
2

)d). The last inequality
in Eq. (2) follows from log2(

1+ε
2) ≤ ε

log 2 − 1 which can be shown by comparing
the y-intercepts and derivatives for ε > 0.

Next, we show that the expected cost of the adaptive strategy is at most
(n + 1)

ε
log 2 /ε. Consider an adaptive strategy which starts by querying the two

edges of the root and recurses as follows: if an edge is alive it queries its two child
edges and otherwise stops. Observe that this simple depth-first search adaptive
strategy will make at most two tests for every alive edge in the binary tree.
Therefore the expected number of tests an adaptive strategy must make is at
most twice the expected number of alive edges. By the branching process analysis
in the proof of Lemma 5, twice the expected number of alive edges is

2
d∑

i=0

(1 + ε)i ≤ 2
log2 n∑

i=0

(1 + ε)i = 2
(1 + ε)log2(n)+1 − 1

(1 + ε) − 1
≤ 4

nlog2(1+ε)

ε
≤ 4

n
ε

log 2

ε

(3)

where the last inequality follows from log2(1 + ε) ≤ ε
log 2 which we can see by

comparing the y-intercepts and slopes for ε > 0. Then Theorem 6 follows from
Eqs. (2) and (3).

Proof (Proof of Lemma 3). A leaf-last non-adaptive strategy S satisfying the
given conditional optimality property clearly exists, because any non-adaptive
strategy can be made leaf-last by moving the leaf tests to the end without affect-
ing its cost when internal edges are free. Define p�(S) as the probability that S
finds an alive leaf for the first time on leaf test �. We may write the expected
number of leaf tests of S as

∑L
�=1 �p�(S).

Now suppose for contradiction that there is some �′ such that p�′(S) <
p�′+1(S). Let S′ be S but with the �′th and (�′ + 1)th tests swapped. We will
show that the expected number of leaf tests made by S′ is strictly lower than
the expected number of leaf tests made by S. Observe that

L∑

�=1

�p�(S) −
L∑

�=1

�p�(S′) = �′(p�′(S) − p�′(S′)) + (�′ + 1)(p�′+1(S) − p�′+1(S′)).

Notice that p�′(S) < p�′+1(S) ≤ p�′(S′) where the first inequality follows by
assumption and the second inequality follows because moving a test on a par-
ticular leaf edge to appear earlier in the permutation can only increase the

Adaptivity Gaps for the Stochastic Boolean Function Evaluation Problem 201

probability that its leaf is the first alive leaf found. In addition, since the com-
bined probability we first find an alive leaf in either the �′th or (�′ + 1)th test
is the same in either order of tests, p�′(S) + p�′+1(S) = p�′(S′) + p�′+1(S′).
Together, we have that −(p�′(S)−p�′(S′)) = p�′+1(S)−p�′+1(S′) > 0. Therefore
∑L

�=1 �p�(S) − ∑L
�=1 �p�(S′) = p�′+1(S) − p�′+1(S′) > 0 and S′ makes fewer leaf

tests in expectation even though S was optimal by assumption. A contradiction!

Proof (Proof of Lemma 4). Define δ� = p − p� ≥ 0 for � ∈ [L′]. Observe that
L′ ≤ L since p ≥ p� for all � ∈ [L′]. Then

L∑

�=1

�p� =
L′
∑

�=1

�(p − δ�) +
L∑

�=L′+1

�p� =
L′
∑

�=1

�p −
L′
∑

�=1

�δ� +
L∑

�=L′+1

�p�. (4)

Now all that remains to be shown is that the sum of the last two terms in Eq.
(4) is non-negative. Notice that

L′
∑

�=1

p� +
L∑

�=L′+1

p� ≥
L′
∑

�=1

p =⇒
L∑

�=L′+1

p� ≥
L′
∑

�=1

(p − p�) =
L′
∑

�=1

δ�.

Then

L′
∑

�=1

�δ� ≤ L′
L′
∑

�=1

δ� ≤ L′
L∑

�=L′+1

p� ≤
L∑

�=L′+1

�p�.

Proof (Proof of Lemma 5). Let Zi denote the number of alive edges at level i.
Then the statement of Lemma 5 becomes Pr(0 < Zd) ≥ ε. Using standard results
from the study of branching processes, we know that

E[Zd] = μd and Var(Zd) =
(
μ2d − μd

) σ2

μ(μ − 1)

where μ is the expectation and σ is the variance of the number of alive “children”
from a single alive edge (see e.g., p. 6 in Harris [22]). In our construction,

μ = 2
(

1 + ε

2

)

= (1 + ε) and σ2 = 2
(

1 + ε

2

) (

1 − 1 + ε

2

)

=
1 − ε2

2

since the children of one edge follow the binomial distribution. Then E[Zd] =
(1 + ε)d and

Var(Zd) =
(
(1 + ε)2d − (1 + ε)d

) 1 − ε2

2(1 + ε)ε
≤ 1

2ε

(
(1 + ε)d

)2
=

1
2ε

E[Zd]2.

We will now use Cantelli’s inequality (see page 46 in Boucheron et al. [4]) to
show that Pr(Zd > 0) ≥ ε. Cantelli’s tells us that Pr(X−E[X] ≥ λ) ≤ Var(X)

Var(X)+λ2

202 L. Hellerstein et al.

for any real-valued random variable X and λ > 0. Choose X = −Zd and λ =
E[Zd]. Then

Pr(Zd ≤ E[Zd] − E[Zd]) ≤ Var(Zd)
Var(Zd) + E[Zd]2

and, by taking the complement,

Pr(Zd > 0) ≥ E[Zd]2

Var(Zd) + E[Zd]2
≥ E[Zd]2

1
2εE[Zd]2 + E[Zd]2

=
2ε

1 + 2ε
≥ ε (5)

for 0 < ε ≤ 1/2. Then Lemma 5 follows from Eq. (5).

4 DNF Formulas

We will show near-linear and linear in n lower bounds for DNF formulas under
the uniform distribution with unit and arbitrary costs, respectively. Since the
function we exhibit has linear terms, the lower bounds also apply to the class of
linear-size DNF formulas.

Theorem 7. Let f : {0, 1}n → {0, 1} be a DNF formula. For unit costs and the
uniform distribution, OPTN (f) ≥ Ω(n/ log n) · OPTA(f).

Proof. Without loss of generality, assume n = 2d + d for some positive integer
d. Consider the address function f with 2d terms which each consist of d shared
variables appearing in all terms, and a single dedicated variable appearing only
in that term. We may write f = T0 ∨ T1 ∨ · · · ∨ T2d−1 where Ti consists of the
shared variables negated according to the binary representation of i and the
single dedicated variable.

By testing the d shared variables, the optimal adaptive strategy can learn
which single term is unresolved and test the corresponding dedicated variable in
a total of d+1 tests. In contrast, any non-adaptive strategy has to search for the
unresolved dedicated test at random which gives expected 2d/2 cost. (We can
ensure the non-adaptive strategy tests the shared variables first by making them
free which can only decrease the expected cost.) It follows that the adaptivity
gap is Ω(2d/d) = Ω(n/ log n).

We can easily modify the address function in the proof of Theorem 7 to
prove an Ω(n) lower bound for DNF formulas under the uniform distribution
and arbitrary costs. In particular, make the cost of each shared variable 1/d.
Then the adaptive strategy pays d ·(1/d)+1 = 2 while the non-adaptive strategy
still pays Ω(n). The O(n) upper bound comes from the increasing cost strategy
and analysis in [25].

Theorem 8. Let f : {0, 1}n → {0, 1} be a DNF formula. For the uniform
distribution, OPTN (f) ≥ Θ(n) · OPTA(f).

Adaptivity Gaps for the Stochastic Boolean Function Evaluation Problem 203

5 Conclusion and Open Problems

We have shown bounds on the adaptivity gaps for the SBFE problem for well-
studied classes of Boolean formulas. Our proof of the lower bound for read-
once formulas depended on having pi’s that are slightly larger than 1/2 but we
conjecture that a similar or better lower bound holds for the uniform distribution.
We note that our lower bound for read-once formulas also applies to (linear-size)
monotone DNF formulas, since the given read-once formula based on the binary
tree has a DNF formula with one term per leaf. Another open question is to
prove a lower bound for monotone DNF formulas that matches our lower bound
for general DNF formulas.

A long-standing open problem is whether the SBFE problem for read-once
formulas has a polynomial-time algorithm (cf. [18,30]). The original problem only
considered adaptive strategies, and it is also open whether there is a polynomial-
time (or pseudo polynomial-time) constant or log n approximation algorithm for
such strategies. Happach et al. [21] gave a pseudo polynomial-time approximation
algorithm for the non-adaptive version of the problem, which outputs a non-
adaptive strategy with expected cost within a constant factor of the optimal non-
adaptive strategy. Because of the large adaptivity gap for read-once formulas, as
shown in this paper, the result of Happach et al. does not have any implications
for the open question of approximating the adaptive version of the SBFE problem
for read-once formulas.

A Additional Proofs

Proof (Proof of Theorem 1). Suppose f is a read-once DNF formula. We will
prove that for unit costs and the uniform distribution, there is a non-adaptive
strategy S such that cost(f, S) ≤ O(log n) · OPTA(f).

Let m be the number of terms in f . Because each variable xi appears in
at most one term, we have that m ≤ n. As a warm-up, we begin by proving
adaptivity gaps for two special cases of f .

Case 1: All Terms have at Most 2 log n Variables. Under the uniform distribution
and with unit costs, the pi are all equal, and the ci are all equal. Thus in this
case, the optimal adaptive strategy described previously tests terms in increasing
order of length. The adaptive strategy skips in the sense that if it finds a variable
in a term that is false, it moves to the next term without testing the remaining
variables in the term. Suppose we eliminate skipping from the optimal adaptive
strategy, making the strategy non-adaptive. Since all terms have at most 2 log n
variables, this increases the testing cost for any given x by a factor of at most
2 log n. Thus the cost of evaluating f(x) for a fixed x increases by a factor of
at most 2 log n from an optimal adaptive strategy to a non-adaptive strategy,
leading to an adaptivity gap of at most 2 log n.

Case 2: All Terms have More than 2 log n Variables Consider the following non-
adaptive strategy that operates in two phases. In Phase 1, the strategy tests a

204 L. Hellerstein et al.

fixed subset of 2 log n variables from each term, where the terms are taken in
increasing length order. In Phase 2, it tests the remaining untested variables in
fixed arbitrary order. Since each term has more than 2 log n variables, the value
f can only be determined in Phase 1 if a false variable is found in each term
during that phase.

Say that an assignment x is bad if the value of f cannot be determined in
Phase 1, meaning that a false variable is not found in every term during the
phase. The probability that a random x satisfies all the tested 2 log n variables
of a particular term is 1/n2. Then, by the union bound, the probability that x
is bad is at most m/n2 ≤ n/n2 = 1/n.

Now let us focus on the good (not bad) assignments x. For each good x, our
strategy must find a false variable in each term of f , which requires at least one
test per term for any adaptive or non-adaptive strategy. The cost incurred by our
non-adaptive strategy on a good x is at most 2m log n, since the strategy certifies
that f(x) = 0 by the end of Phase 1. Therefore, the expected cost incurred by
our non-adaptive strategy S is

cost(f, S) ≤ Pr(x good) · E[cost(f, x, S)|x good]
+ Pr(x bad) · E[cost(f, x, S)|x bad]

≤ 1 · 2m log n +
1
n

· n ≤ 3m log n

using the fact that E[cost(f, x, S)|x bad] ≤ n, since there are only n tests, with
unit costs.

The expected cost of any strategy, including the optimal adaptive strategy,
is at least

OPTA(f) ≥ min
S∈A

Pr(f(x) = 0) · E[cost(f, x, S)|f(x) = 0] ≥ P (f(x) = 0) · m

= (1 − Pr(f(x) = 1)) · m ≥ (1 − Pr(x bad)) · m ≥
(

1 − 1
n

)

· m ≥ m

2

for n ≥ 2. It follows that the adaptivity gap is at most 6 log n.

Case 3: Everything Else. We now generalize the ideas in the above two cases.
Let f be a read-once DNF that does not fall into Case 1 or Case 2. We can break
this DNF into two smaller DNFs, f = f1 ∨ f2 where f1 contains the terms of f
of length at most 2 log n and f2 contains the terms of f of length greater than
2 log n.

Let S be the non-adaptive strategy that first applies the strategy in Case 1
to f1 and then, if f1(x) = 0, the strategy in Case 2 to f2. Since S cannot stop
testing until it determines the value of f , in the case that f1(x) = 0, it will test
all variables in f1 and then proceed to test variables f2.

Let S∗ be the optimal adaptive strategy for evaluating read-once DNFs,
described above. We know S∗ will test terms in non-decreasing order of length
since all tests are equivalent. So, like S, S∗ tests f1 first and then, if f1(x) = 0,
it continues to f2. It follows that we can write the expected cost of S on f as

Adaptivity Gaps for the Stochastic Boolean Function Evaluation Problem 205

E[cost(f, x, S)] = E[cost(f1, x, S1)] + Pr(f1(x) = 0) · E[cost(f2, x, S2)|f1(x) = 0]

where S1 is the first stage of S, where f1 is evaluated, and S2 is the second
stage of S, where f2 is evaluated. Notice that, by the independence of vari-
ables, E[cost(f2, x, S2)|f1(x) = 0] = E[cost(f2, x, S2)]. We can similarly write
the expected cost of S∗ on f . Then the adaptivity gap is

OPTN (f)
OPTA(f)

≤ E[cost(f1, x, S1)] + Pr(f1(x) = 0) · E[cost(f2, x, S2)]
E[cost(f1, x, S∗

1)] + Pr(f1(x) = 0) · E[cost(f2, x, S∗
2)]

(6)

where S∗
1 is S∗ applied to f1 and S∗

2 is S∗ beginning from the point when it
starts evaluating f2.

Using the observation that (a + b)/(c + d) ≤ max{a/c, b/d} for positive real
numbers a, b, c, d, we know that

(6) ≤ max
{
E[cost(f1, x, S1)]
E[cost(f1, x, S∗

1)]
,
E[cost(f2, x, S2)]
E[cost(f2, x, S∗

2)]

}

= O(log n)

where the upper bound follows from the analysis of Cases 1 and 2.

Proof (Proof of Theorem 2). Suppose f is a read-once DNF formula. For unit
costs and the uniform distribution, we will show that OPTN (f) ≥ Ω(log n) ·
OPTA(f).

For ease of notation, assume
√

n is an integer. Consider a read-once DNF f
with

√
n terms where each term has

√
n variables. By examining the number of

tests in each term, we can write the optimal adaptive cost as

OPTA(f) ≤ √
n

√
n∑

i=1

i

2i
≤ √

n

∞∑

i=1

i

2i
= 2

√
n.

The key observation is that, within a term, the adaptive strategy queries vari-
ables in any order since each variable is equivalent to any other. Then the prob-
ability that the strategy queries exactly i ≤ √

n variables is 1/2i.
Next, we will lower bound the expected cost of the optimal non-adaptive

strategy

OPTN (f) = min
S∈N

Ex∼{0,1}n [cost(f, x, S)]

≥ min
S∈N

Pr(f(x) = 0)E[cost(f, x, S)|f(x) = 0]

where x ∼ {0, 1}n indicates x is drawn from the uniform distribution. First, we
know Pr(f(x) = 0) ≥ .5. To see this, consider a random input x ∼ {0, 1}n. The
probability that a particular term is true is 1/2

√
n so the probability that all

terms are false (i.e., f(x) = 0) is

(

1 − 1
2

√
n

)√
n

=

⎛

⎝
(

1 − 1
2

√
n

)2
√

n
⎞

⎠

√
n/2

√
n

≥
(

1
2e

)√
n/2

√
n

≥ .5

206 L. Hellerstein et al.

where the first inequality follows from the loose lower bound that (1 − 1/x)x ≥
1/(2e) when x ≥ 2 and the second inequality follows when n ≥ 8. Second, we
know

E[cost(f, x, S)|f(x) = 0]

≥ Pr(one term needsΩ(log n)tests|f(x) = 0) · log4 n

2
·
√

n

2

where we used the symmetry of the terms to conclude that if any term needs
Ω(log n) tests to evaluate it then any non-adaptive strategy will have to spend
Ω(log n) on half the terms in expectation.

All that remains is to lower bound the probability one term requires Ω(log n)
tests given f(x) = 0. Observe that this probability is

1 − (1 − Pr(a particular term needsΩ(log n)tests|f(x) = 0))
√

n

≥ 1 −
(

1 − 1√
n

)√
n

≥ 1 − 1
e

≥ .63

where we will now show the first inequality. We can write the probability that a
particular term needs log4(n)/2 tests given f(x) = 0 as

Pr (x1 = 1|f(x) = 0) · · · Pr
(
xlog4(n)/2

= 1|f(x) = 0, x1 = · · · = xlog4(n)/2−1 = 1
)

=
2

√
n−1 − 1

2
√

n − 1
· · · 2

√
n−1−log4(n)/2 − 1

2
√

n−log4(n)/2 − 1
≥

(
2

√
n−1−log4(n)/2 − 1

2
√

n−log4(n)/2 − 1

)log4(n)/2

≥
(

1
4

)log4(n)/2

=
1√
n

.

For the first equality, we use the observation that conditioning on f(x) = 0
eliminates the possibility every variable is true so the probability of observing
a true variable is slightly smaller. For the first inequality, notice that (2i−1 −
1)/(2i − 1) is monotone increasing in i. For the second, observe that i ≥ √

n −
log4(n)/2 for our purposes and so (2i−1 − 1)/(2i − 1) ≥ 1/4 when n ≥ 16.

Proof (Proof of Theorem 4). Suppose f is a read-once DNF. For unit costs and
arbitrary probabilities, we prove OPTN (f) ≥ Ω(

√
n) · OPTA(f).

Consider the read-once DNF with m = 2
√

n identical terms where each term
has � =

√
n/2 variables. In each term, let one variable have 1/� probability of

being true and the remaining variables have a (�/m)1/(�−1) probability of being
true. Within a term, the optimal adaptive strategy will test the variable with
the lowest probability of being true first. Using this observation, we can write

OPTA(f) ≤ [Pr(x1 = 0) · 1 + Pr(x1 = 1) · �] · m

≤ [(1 − 1/�) · 1 + (1/�) · �] · m ≤ 4
√

n

where x1 is the first variable tested in each term. The first inequality follows by
charging the optimal adaptive strategy for all � tests in the term if the first one

Adaptivity Gaps for the Stochastic Boolean Function Evaluation Problem 207

is true. The second inequality follows since the variable with probability 1/� of
being true is tested first for n ≥ 18 (i.e., 1/� < (�/m)1/(�−1) for such n).

In order to lower bound the cost of the optimal non-adaptive strategy, we will
argue that there is a constant probability of an event where the non-adaptive
strategy has to test Ω(n) variables. In particular,

OPTN (f) ≥ min
S∈N

Pr(exactly one term is true)

·E[cost(f, x, S)| exactly one term is true].

By the symmetry of the terms, observe that

E[cost(f, x, S)| exactly one term is true] ≥ √
n/2 · √

n = n/2.

That is, the optimal non-adaptive strategy has to search blindly for the single
true term among all 2

√
n terms, making

√
n/2 tests each for half the terms in

expectation.
All that remains is to show there is a constant probability exactly one term is

true. The probability a particular term is true is (1/�)((�/m)1/(�−1))(�−1) = 1/m.
Since all variables are independent, the probability that exactly one of the m
terms is true is

m · Pr(a term is true) · Pr(a term is false)m−1

=m · 1
m

·
(

1 − 1
m

)m−1

≥ 1
2e

(m−1)/m

≥ 1
2e

.

It follows that OPTN (f) ≥ 1
2e · n

2 = Ω(n) so the adaptivity gap is Ω(
√

n).

Proof (Proof of Theorem 5). Suppose f is a read-once formula. For arbitrary
costs and the uniform distribution, OPTN (f) ≥ Ω(n1−ε/ log n) · OPTA(f).

Define W (w) := w1−ε log2(w1−ε) for positive real numbers w.3 We will choose
nε in terms of the function W so that W (n) < n for n ≥ nε. First, consider the
first and second derivatives of W :

W ′(w) =
1 − ε

wε

(

log2(w
1−ε) +

1
log 2

)

W ′′(w) =
1 − ε

w1+ε

[

−ε

(

log2(w
1−ε) +

1
log 2

)

+
1 − ε

log 2

]

.

For fixed ε > 0, observe that as w goes to infinity, W (w) < w, W ′(w) < 1, and
W ′′(w) < 0. Therefore there is some point nε so that for all n ≥ nε, the slope
of W is decreasing, the slope of W is less than the slope of n, and W (n) is less
than n. Equivalently, n ≥ W (n) = n1−ε log2(n1−ε). We will use this inequality
when lower bounding the asymptotic behavior of the adaptivity gap.

3 Notice that W is similar to a Lambert W function eyy, after changing the base of
the logarithm and substituting y = log(w1−ε) [6].

208 L. Hellerstein et al.

For n ≥ nε we construct the n-variable read-once DNF formula f as follows.
First, let rn be a real number such that n = n1−rn log2(n1−rn). We know that rn

exists for all n ≥ 4 by continuity since n1−0 log2(n1−0) ≥ n ≥ n1−1 log2(n1−1).
Let f be the read-once DNF formula with m terms of length �, where � =
log2(n1−rn) and m = 2�. Thus the total number of variables in f is m� =
n1−rn log2(n1−rn) = n as desired. We assume for simplicity that � is an integer.
The bound holds by a similar proof without this assumption.

To obtain our lower bound on evaluating this formula, we consider expected
evaluation cost with respect to the uniform distribution and the following cost
assignment: in each term, choose an arbitrary ordering of the variables and set
the cost of testing the ith variable in the term to be 2i−1.

Consider a particular term. Recall the optimal adaptive strategy for evalu-
ating a read-once DNF formula presented at the start of Sect. 2. Within a term,
this optimal strategy tests the variables in non-decreasing cost order, since each
variable has the same probability of being true. Since it performs tests within a
term until finding a false variable or certifying the term is true, we can upper
bound the expected cost of this optimal adaptive strategy in evaluating f as
follows:

OPTA(f) ≤ m ·
[
1
2

· (1) +
1
4

· (1 + 2) + . . . +
1
2�

· (1 + . . . + 2�−1)
]

≤ m · �.

In contrast, the optimal non-adaptive strategy does not have the advantage of
stopping tests in a term when it finds a false variable. We will lower bound the
expected cost of the optimal non-adaptive strategy in the case that exactly one
term is true. By symmetry, any non-adaptive strategy will have to randomly
search for the term and so pay 2� for half the terms in expectation.

All that remains is to show there is a constant probability exactly one term is
true. The probability that a particular term is true is 1/2� and so the probability
that exactly one term is true is

m · 1
2�

·
(

1 − 1
2�

)m−1

≥ m

2�
·
(

1
2e

)(m−1)/2�

≥ 1
2e

where the last inequality follows since m = 2�. Then the expected cost OPTN (f)
of the optimal non-adaptive strategy is at least

Pr(exactly one term is true) · 2� · m

2
= Ω(m · 2�) = Ω(m · n1−rn) ≥ Ω(m · n1−ε)

where we used that 2� = n1−rn and n1−rn log2(n1−rn) = n ≥ n1−ε log2(n1−ε)
since n ≥ nε. It follows that the adaptivity gap is Ω(n1−ε/ log n).

References

1. Agarwal, A., Assadi, S., Khanna, S.: Stochastic submodular cover with limited
adaptivity. In: Chan, T.M. (ed.) Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pp. 323–342. SIAM (2019)

Adaptivity Gaps for the Stochastic Boolean Function Evaluation Problem 209

2. Asadpour, A., Nazerzadeh, H., Saberi, A.: Stochastic submodular maximization.
In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 477–489.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92185-1 53

3. Boros, E., Unyulurt, T.: Sequential testing of series-parallel systems of small depth.
In: Laguna, M., Velarde, J.L.G. (eds.) Computing Tools for Modeling, Optimization
and Simulation: Interfaces in Computer Science and Operations Research, pp. 39–
73. Springer, Boston (2000). https://doi.org/10.1007/978-1-4615-4567-5 3

4. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymp-
totic Theory of Independence. Oxford University Press, Oxford (2013)

5. Bradac, D., Singla, S., Zuzic, G.: (Near) optimal adaptivity gaps for stochas-
tic multi-value probing. In: Achlioptas, D., Végh, L.A. (eds.) Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2019, 20–22 September 2019, Massachusetts Institute of
Technology, Cambridge, MA, USA. LIPIcs, vol. 145, pp. 49:1–49:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2019)

6. Bronstein, M., Corless, R.M., Davenport, J.H., Jeffrey, D.J.: Algebraic properties
of the Lambert W function from a result of Rosenlicht and of Liouville. Integral
Transform. Spec. Funct. 19(10), 709–712 (2008)

7. Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack
problem: the benefit of adaptivity. In: Proceedings of 45th Symposium on Foun-
dations of Computer Science (FOCS 2004), 17–19 October 2004, Rome, Italy, pp.
208–217. IEEE Computer Society (2004)

8. Dean, B.C., Goemans, M.X., Vondrák, J.: Adaptivity and approximation for
stochastic packing problems. In: Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia,
Canada, 23–25 January 2005, pp. 395–404. SIAM (2005)

9. Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack
problem: the benefit of adaptivity. Math. Oper. Res. 33(4), 945–964 (2008)

10. Deshpande, A., Hellerstein, L., Kletenik, D.: Approximation algorithms for stochas-
tic submodular set cover with applications to boolean function evaluation and
min-knapsack. ACM Trans. Algorithms 12(3), 42:1–42:28 (2016)

11. El-Neweihi, E., Proschan, F., Sethuraman, J.: Optimal allocation of components in
parallel-series and series-parallel systems. J. Appl. Probab. 23(3), 770–777 (1986)

12. Eppstein, D.: Parallel recognition of series-parallel graphs. Inf. Comput. 98(1),
41–55 (1992)

13. Fu, L., Fu, X., Xu, Z., Peng, Q., Wang, X., Lu, S.: Determining source-destination
connectivity in uncertain networks: modeling and solutions. IEEE/ACM Trans.
Netw. 25(6), 3237–3252 (2017)

14. Ghuge, R., Gupta, A., Nagarajan, V.: Non-adaptive stochastic score classification
and explainable halfspace evaluation. CoRR abs/2111.05687 (2021)

15. Ghuge, R., Gupta, A., Nagarajan, V.: The power of adaptivity for stochastic sub-
modular cover. In: Proceedings of the 38th International Conference on Machine
Learning, ICML (2021)

16. Gkenosis, D., Grammel, N., Hellerstein, L., Kletenik, D.: The stochastic score clas-
sification problem. In: 26th Annual European Symposium on Algorithms, ESA
2018, 20–22 August 2018, Helsinki, Finland, pp. 36:1–36:14 (2018)

17. Goemans, M., Vondrák, J.: Stochastic covering and adaptivity. In: Correa, J.R.,
Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 532–543. Springer,
Heidelberg (2006). https://doi.org/10.1007/11682462 50

18. Greiner, R., Hayward, R., Jankowska, M., Molloy, M.: Finding optimal satisficing
strategies for and-or trees. Artif. Intell. 170(1), 19–58 (2006)

https://doi.org/10.1007/978-3-540-92185-1_53
https://doi.org/10.1007/978-1-4615-4567-5_3
https://doi.org/10.1007/11682462_50

210 L. Hellerstein et al.

19. Gupta, A., Nagarajan, V., Singla, S.: Algorithms and adaptivity gaps for stochastic
probing. In: Krauthgamer, R. (ed.) Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
10–12 January 2016, pp. 1731–1747. SIAM (2016)

20. Gupta, A., Nagarajan, V., Singla, S.: Adaptivity gaps for stochastic probing: sub-
modular and XOS functions. In: Klein, P.N. (ed.) Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, 16–19 January 2017, pp. 1688–1702. SIAM
(2017)

21. Happach, F., Hellerstein, L., Lidbetter, T.: A general framework for approximating
min sum ordering problems. INFORMS J. Comput. 34(3), 1437–1452. https://doi.
org/10.1287/ijoc.2021.1124

22. Harris, T.E., et al.: The Theory of Branching Processes, vol. 6. Springer, Berlin
(1963)

23. Harvey, N.J., Patrascu, M., Wen, Y., Yekhanin, S., Chan, V.W.: Non-adaptive
fault diagnosis for all-optical networks via combinatorial group testing on graphs.
In: IEEE INFOCOM 2007–26th IEEE International Conference on Computer Com-
munications, pp. 697–705. IEEE (2007)

24. Hellerstein, L., Kletenik, D., Lin, P.: Discrete stochastic submodular maximiza-
tion: adaptive vs. non-adaptive vs. offline. In: Proceedings of the 9th International
Conference on Algorithms and Complexity (CIAC) (2015)

25. Kaplan, H., Kushilevitz, E., Mansour, Y.: Learning with attribute costs. In: Gabow,
H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM Symposium on Theory
of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 356–365. ACM (2005)

26. Kaplan, H., Kushilevitz, E., Mansour, Y.: Learning with attribute costs. In: Pro-
ceedings of the 37th Annual ACM Symposium on Theory of Computing, (STOC),
pp. 356–365 (2005)

27. Kowshik, H.J.: Information aggregation in sensor networks. University of Illinois
at Urbana-Champaign (2011)

28. Liva, G., Paolini, E., Chiani, M.: Optimum detection of defective elements in non-
adaptive group testing. In: 2021 55th Annual Conference on Information Sciences
and Systems (CISS), pp. 1–6. IEEE (2021)

29. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cam-
bridge (2014)

30. Ünlüyurt, T.: Sequential testing of complex systems: a review. Discret. Appl. Math.
142(1–3), 189–205 (2004)

31. Wikipedia: Series and parallel circuits – Wikipedia, the free encyclopedia (2022).
Accessed 8 Feb 2022

https://doi.org/10.1287/ijoc.2021.1124
https://doi.org/10.1287/ijoc.2021.1124

On Streaming Algorithms for Geometric
Independent Set and Clique

Sujoy Bhore1 , Fabian Klute2 , and Jelle J. Oostveen2(B)

1 Indian Institute of Science Education and Research, Bhopal, India
2 Utrecht University, Utrecht, The Netherlands

{f.m.klute,j.j.oostveen}@uu.nl

Abstract. We study the maximum geometric independent set and
clique problems in the streaming model. Given a collection of geometric
objects arriving in an insertion only stream, the aim is to find a sub-
set such that all objects in the subset are pairwise disjoint or intersect
respectively.

We show that no constant factor approximation algorithm exists to
find a maximum set of independent segments or 2-intervals without using
a linear number of bits. Interestingly, our proof only requires a set of
segments whose intersection graph is also an interval graph. This reveals
an interesting discrepancy between segments and intervals as there does
exist a 2-approximation for finding an independent set of intervals that
uses only O(α(I) log |I|) bits of memory for a set of intervals I with
α(I) being the size of the largest independent set of I. On the flipside
we show that for the geometric clique problem there is no constant-factor
approximation algorithm using less than a linear number of bits even for
unit intervals. On the positive side we show that the maximum geomet-
ric independent set in a set of axis-aligned unit-height rectangles can be
4-approximated using only O(α(R) log |R|) bits.

Keywords: Geometric independent set · Streaming algorithms ·
Geometric intersection graphs · Communication lower bounds

1 Introduction

The independent set problem is one of the fundamental combinatorial optimiza-
tion problems in theoretical computer science, with a wide range of applications.
Given a graph G = (V,E), a set of vertices M ⊂ V is independent if no two
vertices in M are adjacent in G. A maximum independent set is a maximum
cardinality independent set. Maximum independent set is one of the most well-
studied algorithmic problems and is one of Karp’s 21 classic NP-complete prob-
lems [33]. Moreover, it is well-known to be hard to approximate: no polynomial
time algorithm can achieve an approximation factor n1−ε, for any constant ε > 0,

Fabian Klute supported by the Austrian Science Foundation (FWF) grant J4510. Jelle
Oostveen is partially supported by the NWO grant OCENW.KLEIN.114 (PACAN).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Chalermsook and B. Laekhanukit (Eds.): WAOA 2022, LNCS 13538, pp. 211–224, 2022.
https://doi.org/10.1007/978-3-031-18367-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18367-6_11&domain=pdf
http://orcid.org/0000-0003-0104-1659
http://orcid.org/0000-0002-7791-3604
https://doi.org/10.1007/978-3-031-18367-6_11

212 S. Bhore et al.

unless P = NP [28,39]. Maximum independent set serves as a natural model for
many real-life optimization problems, including map labeling, computer vision,
information retrieval, and scheduling; see [1,6,9].

Geometric Independent Set. In the geometric setting we are given a set of geo-
metric objects S, and we say a subset S ′ ⊆ S is independent if no two objects in
S ′ intersect and we say S ′ is a clique if every two objects pairwise intersect. Let
α(S) be the cardinality of the largest subset S ′ ⊆ S such that S ′ is an indepen-
dent set and ω(S) the cardinality of the largest subset of S ′ ⊆ S such that S ′

is a clique. The geometric maximum independent set and geometric maximum
clique problem ask for a set S ⊆ S of independent objects (that induce a clique)
such that S = α(S) (S = ω(S)).

Given a set S of geometric objects, we define the geometric intersection graph
G(S) as the simple graph in which each vertex corresponds to an object in S and
two vertices are connected by an edge if their corresponding objects intersect.

Stronger results are known for the geometric maximum independent set prob-
lem is known in comparison to general graphs. A fundamental problem is the
1-dimensional case, where all objects are intervals. This problem is also known
as interval selection problem which has applications to scheduling and resource
allocation [7]. For intervals geometric maximum independent set can be solved
in O(n log n) time, by a simple greedy algorithm that sweeps the line from left
to right and at each step picks the interval with the leftmost right endpoint, see
e.g. [34]. In contrast, the geometric maximum independent set problem is already
NP-hard for sets of segments in the plane using only two directions [35], or 2-
intervals [8]. For some restricted classes of segment intersection graphs, such as
permutation [31] and circle graphs [25], the geometric maximum independent set
problem can be solved in polynomial time. Efficient approximation algorithms
exist for example for unit square intersection graphs [21] and more generally for
pseudo disks [15], as well as segments [3,22]. In a recent breakthrough work [37],
it was shown that there exists a constant-factor approximation scheme for max-
imum independent set for a set of axis-aligned rectangles. Very recently, this
factor was improved to 3 [24]. Also, the geometric maximum independent set
problem has been extensively studied for dynamic geometric objects, i.e., objects
can be inserted and deleted [10,12,17,26,29].

Streaming Algorithms. In this paper, we study the geometric maximum inde-
pendent set and geometric maximum clique problems for insertion only streams
of geometric objects. In the streaming model we consider data that is too large
to fit at once into the working memory. Instead the data is dealt with in a data
stream in which we receive the elements of the input one after another in no
specific order and have access to only a limited amount of memory. More specif-
ically, in this model, we have bounds on the amount of available memory. As
the data arrives sequentially, and we are not allowed to look at input data of
the past, unless the data was stored in our limited memory. This is effectively
equivalent to assuming that we can only make one or a few passes over the input

On Streaming Algorithms for Geometric Independent Set and Clique 213

data. We refer to [36,38] and the lecture notes of Chakrabati [13] for an overview
on the general topic of streaming algorithms.

For maximum independent set Halldórsson et al. [27] studied the problem
for graphs and hypergraps in linear space in the semi-streaming model: Their
model work in poly-logarithmic space, like in the case of the classical streaming
model, but they can access and update the output buffer, treating it as an extra
piece of memory. Kane et al. [32] gave the first optimal algorithm for estimating
the number of distinct elements in a data stream.

Streaming algorithms for geometric data have seen a flurry of results in recent
years; see [2,16,19,23,30]. Note that one can also view a stream of geometric
objects S as a vertex stream, also called implicit vertex stream, of its associated
geometric intersection graph G(S) [18]. Finding an independent, i.e. disjoint, set
of geometric objects in a data stream has been among the most studied problems
in this geometric direction. Emek et al. [20] studied the interval selection prob-
lem, where the input is a set of intervals I with real endpoints, and the objective
is to find an independent subset of largest cardinality. They studied the interval
selection problem using O(α(I)) space. They presented a 2-approximation algo-
rithm for the case of arbitrary intervals and a (3/2)-approximation for the case
of unit intervals, i.e., when all intervals have the same length. These bounds are
also known to be the best possible [20]. Cabello et al. [11] studied the question of
estimating α(I) for a set I of intervals and gave simpler proofs of the algorithms
presented by Emek et al. [20].

Cormode et al. [18] considered unit balls in the L1 and L∞ norms, i.e. squares
in R

2. For a set of such unit balls B they obtained a 3-approximation using
O(α(B)) space and show that there is no 5

2 − ε approximation using o(|B|)
space. Finally, Bakshi et al. [5] considered Turnstile streams, i.e., deletion is also
allowed, of (weighted) unit intervals and disks.

1.1 Our Results

In this paper we investigate several geometric objects that have not been studied
in the context of streaming algorithms. We show in Sect. 2 that there is no
constant-factor approximation in the streaming model for finding an independent
set of n segments using o

(
n
p

)
bits of memory for any constant number p of passes

and this bound holds even if the endpoints of the segments are on two parallel
lines. In other words, our bound holds even when the geometric intersection
graph of the segments is a permutation graph.

Our construction leads to an interesting consequence. Namely, the intersec-
tion graph created in our reduction is not only a permutationa graph, but also
an interval graph and the cardinality of its maximum independent set is not
dependent on the input size. Since there exists a 2-approximation algorithm for
geometric independent set of a set of intervals I in the streaming model that uses
only O(α(I)) space this implies that there is a difference between an interval
graph being streamed as a set of intervals or as a set of segments. We discuss this
implication in Sect. 3. In Sect. 4 we show that for streams of 2-intervals there is

214 S. Bhore et al.

no one-pass algorithm that achieves a constant-factor approximation using less
than o(n) bits. On the positive side we show in Sect. 5 that for n axis-aligned
unit height rectangles there exists a one pass streaming algorithm achieving a
4-approximation of the largest set of disjoint rectangles using O(α(R) log n) bits.

Finally, we show in Sect. 6 that the distinction between segments and inter-
vals observed for the geometric independent set problem does not occur for the
same objects in the geometric clique problem by showing that there does not
exist a p-pass algorithm using less than o

(
n
p

)
bits of memory and achieving a

constant-factor approximation of the geometric clique problem in streams of n
unit intervals. We complement this hardness result by showing how to obtain an
exact solution for the geometric clique problem in streams of n intervals using
only O(n log ω(I)) bits of memory.

2 Independent Sets in Streams of Segments

In this section we establish our lower bound for the memory necessary to approx-
imate the maximum independent set problem to any constant factor on streams
of segments. We employ a lower bound reduction technique that uses multi-party
set disjointness, which gives us space bounds not only for single-pass algorithms,
but also for multi-pass algorithms. The following problem was first studied by
Alon, Matias, and Szegedy [4].

Definition 1 (Multi-Party Set Disjointness). There are t players P1, . . . ,
Pt. Each player Pi has a size n bit string xi. The players want to find out if there
is an index j ∈ [n] where xi

j = 1 for all i. So, Disjn,t(x1, . . . , xt) =
∨n

j=1

∧t
i=1 xi

j.

In our proof we are going to make use of the following result on the commu-
nication complexity of Multi-Party Set Disjointness.

Theorem 1 (Chakrabarti et al. [14]). For an error probability 0 < δ < 1/4,
to decide Disjn,t the players need Ω(n

t log t) bits of communication, even for a
family of instances (x1, . . . , xt) satisfying the following properties

|{j : xi
j = 1}| = n/2t ∀i ∈ [t] (1)

|{i : xi
j = 1}| ∈ {0, 1, t} ∀j ∈ [n] (2)

|{j : |{i : xi
j = 1}| = t}| ≤ 1 (3)

We can use Theorem 1 by having t players use a streaming algorithm to
answer Disjn,t. The players construct the stream by creating some part of the
stream and giving it to the algorithm, and then passing the memory state of
the algorithm to the next player who does the same. This way, the space used
by the algorithm must abide to the lower bound on the communication between
the players. We can use the t players (rather than just 2) to create a bigger gap
between the yes and no answer, excluding the possibility for any constant factor
approximation algorithms.

On Streaming Algorithms for Geometric Independent Set and Clique 215

Fig. 1. Lower bound for Independent Set in permutation graphs, with t = 3 players.
Here the independent set has size t, by the j-th group, where xi

j = 1 for all i ∈ [t].

Lemma 1. For any p ≥ 1, t ≥ 2, any algorithm for geometric maximum inde-
pendent set that can distinguish between instances with an independent set of
size 1 and t and succeeds with probability at least 3/4 on segment streams using
p passes must use at least Ω(n

p·t log t) bits of memory, even when the segment
endpoints lie on two parallel lines.

Proof. Let (x1, . . . , xt) be an instance of Disjointness with t players, each with
n bits. We construct a permutation graph depending on the input to Disjoint-
ness, as illustrated in Fig. 1 for t = 3. Let the permutation graph have n groups
of t points both on the top, labelled 1, . . . , n from left to right. On the bottom
do the same, but we label from n to 1 from left to right. For i ∈ [t], j ∈ [n],
player i creates a segment from the i-th point in group j at the top to the i-th
point in group j at the bottom when xi

j = 1. This creates a permutation graph
with n′ = n/2 vertices by Property 1 of Theorem 1.

The players construct the segment stream for some algorithm for Max-
Clique as follows, starting from player 1, player i inputs all their n/2t segments,
then passes the memory state of the algorithm to player i+1, and this continues
until all players have input their segments.

We claim that the graph will contain an independent set of size t if exactly
Disjn,t(x1, . . . , xt) = 1, and otherwise the maximum independent set size is 1.

First notice that any segment inserted to a group j ∈ [n] intersects all other
segments in the graph, except for segments inserted to group j, as these segments
are parallel to it. Hence, any independent set can only contain vertices that
correspond to segments inserted to the same group j, for some j ∈ [n], and the
size of the independent set is the number of 1’s present over all players at index
j. Now by Property 2 of Theorem 1, any independent set can have only size 1 or
t in the graph. And indeed, an independent set of size t implies that all t players
inserted a segment for some group j ∈ [n], and hence all have a 1 for index j.

Now it follows from Theorem 1 that any algorithm for maximum independent
set on a permutation graph with n′ vertices that can discern between indepen-

216 S. Bhore et al.

dent set size 1 and t with probability at least 3/4 using p passes over the stream
must use at least Ω(n

p·t log t) = Ω(n′
p·t log t) bits of memory. �	

We now use Lemma 1 to give a general hardness statement for approximation
geometric maximum independent set in segment streams.

Theorem 2. Any constant-factor approximation algorithm for geometric max-
imum independent set that succeeds with probability at least 3/4 on segment
streams using p passes must use at least Ω(n/p) bits of memory, even when it
is known that the segments correspond to a permutation graph.

Proof. Let us be given some constant-factor approximation algorithm for geo-
metric maximum independent set that succeeds with probability at least 3/4
on segment streams of permutation graphs in p passes. Then there exists some
c ≥ 2 such that the algorithm can distinguish between an independent set of
size 1 or c in a given graph. But then we can apply Lemma 1 to get that this
algorithm must use at least Ω(n

p·c log c) = Ω(n/p) bits of memory. �	

3 Intervals and Segments are Different

When we consider the intersection graph G of the set of segments constructed in
the proof of Theorem 2 one can see that it has a straight-forward representation
as a set of intervals whose intersection graph is isomorphic to G. Also, notice that
the size of the independent set of the construction is not dependent on the length
of the bit strings, but only on the number of players. For example, we can rule
out the existence of a 2-approximation streaming algorithm using any constant
number p of passes and o(n/p) bits of memory, already when t/2 ≥ 2 ⇐⇒ t ≥ 4
players are used in the construction presented in Lemma 1.

At the same time there exists a 2-approximation one pass streaming algo-
rithm for independent sets of intervals that uses only O(α(I) log |I|) bits of
memory where I is the set of input intervals [11,20]. Hence, these algorithms
find a 2-approximation of the independent set of the intersection graph con-
structed in the proof of Lemma 1 using only O(log n) bits of memory if the
graph was given as a set of intervals. This leads to the following corollary.

Corollary 1. Given a stream of segments S whose intersection graph G(S) is
in the intersection of permutation and interval graphs, there is no algorithm that
uses o(n/p) bits of memory and p ≥ 1 passes and computes a stream of intervals
I such that G(I) is isomorphic to G(S).

4 Independent Sets in Streams of c-Intervals

A c-interval is a set of non-overlapping intervals {I1, . . . , Ic} on the real line. We
say two c-intervals intersect if at least two of their intervals have one point in
common. We call a family of c-intervals separated if the intervals can be split into
independent groups of intervals, each containing at most one interval from each

On Streaming Algorithms for Geometric Independent Set and Clique 217

c-interval, without changing which c-intervals intersect. Since we only consider
2-intervals we can talk of left and right intervals. Formally, let T = {L,R} be
a 2-interval such that the startpoint of L is left of the startpoint of R, then we
denote L as the left interval of T and R as the right interval of T .

For the reduction we use the Chaint communication problem which was
introduced by Cormode et al. [18].

Definition 2 (Cormode et al. [18]). The t-party chained index problem
Chaint consists of t − 1 n-bit binary vectors {xi}t−1

i=1, along with correspond-
ing indices {σi}t−1

i=1 from the range [n]. We have the promise that the entries
{xi

σi
}t−1

i=1 are all equal to the desired bit z ∈ {0, 1}. The input is initially allo-
cated as follows:

– The first party P1 knows x1

– Each intermediate party Pp for 1 < p < k knows xp and σp−1

– The final party Pt knows just σt−1

Communication proceeds as follows: P1 sends a single message to P2, then P2

communicates to P3, and so on, with each party sending exactly one message to
its immediate successor. After all messages are sent, Pk must correctly output z,
succeeding with probability at least 2/3. If the promise condition is violated, any
output is considered correct.

Cormode et al. [18] showed the following result in the same paper.

Theorem 3 (Cormode et al. [18]). Any communication scheme B which
solves Chaint must communicate at least Ω(n

t2) bits.

In the following we use the Chaint to show that there is no one-pass stream-
ing algorithm that computes a constant-factor approximation of the maximum
independent set for a family of separated 2-intervals using o(n) bits of memory.

Remark 1. For Chaint we may assume that party i > 1 knows all indices before
σi−1. To realize this, just assume that every party i appends all i − 1 previous
indices to its message. This uses only O(t log n) bits in each such message and
hence O(t2 log n) bits in total. As this is a lower order term with respect to the
bound in Theorem 3 we retain the linear communication bound of Ω(n

t2).

We define an interval stack as a set of intervals I1, . . . , In on the real line
where first all startpoints appear in order of the indices and then all endpoints,
again in order of the interval indices. We denote as left-gap the space between
the startpoint of Ii and Ii+1 for i = 1, . . . , n−1 and the startpoint of In and the
endpoint of I1. Observe that any interval containing a point of the left gap of Ii

intersects all intervals Ij with 1 ≤ j ≤ i. As for independent sets of segments we
first show a technical lemma.

Lemma 2. For any t ≥ 2, any algorithm for geometric maximum independent
set that can distinguish between instances admitting an independent set of size 1
and t and succeeds with probability at least 2/3 on streams of 2-intervals must use
at least Ω(n

t3) bits of memory, even if the union of the 2-intervals is separated.

218 S. Bhore et al.

Fig. 2. Left intervals created for party i in the construction of Lemma 2. The intervals
in the grey box are for party i, the intervals outside are of party i − 1, and the boxes
mark the left gap spaces for party i + 1. The red interval is the interval corresponding
to a 1 bit at σi. Dotted intervals and boxes are not actually inserted by the parties. The
shown coordinates are the local coordinates for the interval stack inserted by party i.
(Color figure online)

Proof. Given an instance of Chaint with n
t -length bit strings xi and indices

σj . Let N = n
t and will assume for simplicity that n

t is a whole number. We
create one 2-interval T i

j = (Li
j , R

i
j) for each 1 bit at index j of bit string i

and one additional 2-interval for party t. In the following we first describe the
construction of the left intervals. See Fig. 2 for an illustration.

Create an interval stack Li = {Li
j | ∀j ∈ [N] : xi has a 1 bit at index j}. To

simplify the presentation we assume that all n
t intervals are present in T i. When

actually constructing the intervals in a stream party i simply does not add an
interval when the jth bit is set to 0, but still shifts the coordinates accordingly.
We initially place the intervals of L1 and then place Li for i > 1 in the left gap
of Li−1

σi−1
. For player t we add one interval Lt

1 in the left gap of Lt−1
σt−1

. Let L be
the union of all Li.

To complete the construction we create the same construction using the
reversed bit strings for each party. This creates the interval stacks Ri, i = 1, . . . , n
and with Ri

j we denote the right interval inserted by the ith party for the 1 bit
at index j in the non-reversed bit string xi. Let R be the union of all Ri. Finally,
we create a set of 2-intervals as T = {(Li

j , R
i
j) | Li

j ∈ Li and Ri
j ∈ Ri}.

Consider a 2-interval T i
j = (L,R) inserted for bit string xi such that j �= σi

for any i ∈ {1, . . . , t−1}. Then, L is contained in all intervals La
b with a < i and

b < σa. Moreover, L contains every La
b with a > i and b < σi. Similarly, R is

contained in all intervals Ra
b with a > i and b > σj and contains every Ra

b with
a > i and b > σi. Consequently if T i

j is part of an independent set I ⊆ T we can
only add 2-intervals T a

b to I with a < i and j = σa.
If the answer bit is 0 then no 2-interval corresponding to some σi index exists

and hence by the above argumentation the largest independent set has size one.
If the answer bit is 1 then there is a 2-interval T i

σi
for every σi with i = 1, . . . , t

and all t of them are independent. Hence, the largest independent set in this
case has size t.

On Streaming Algorithms for Geometric Independent Set and Clique 219

It remains to describe the precise coordinates of the intervals and argue that
we only need O(log n) bits to represent the construction for every fixed t. For
each party i = 1, . . . , t let Si be the length of the left interval stack. Since for
party t we insert only one 2-interval we set St = 2. Let T be the set of 2-
intervals created as above. In the following we consider only the left intervals of
every T i

j ∈ T . The calculation and placement works analogously for the right
intervals after reversing every xi. Let Li

j be a left interval for party i and index
j. We put the startpoint of Li

j at position 1+(j −1) · (Si+1 +1) and its endpoint
at j + N · (Si+1 + 1). Hence, for party i its left interval stack has length at most

Si = N + N · (Si+1 + 1) = N · (Si+1 + 2).

This can be written as a closed formula

Si = 4N t−i · 2
t−(i+1)∑

j=1

N j = 4N t−i · 2
(

N t−i − N

N − 1

)
.

Now, party i places its left stack at

Pi = 1 +
i−1∑
j=1

((σj − 1) · (Sj+1 + 1) + 1) .

The last party places an interval of length two at position Pt. Since every left
interval placed by a party i > 1 is nested by the intervals inserted into the
stream by the first party we can conclude that S1 ∈ O

(
N t−1

)
. This number can

be represented using O(t log N) = O(t log n
t) bits. Since t can be treated as a

constant we get that we only require O(t log n
t) = O(log n) bits. �	

We conclude Theorem 4 from Lemma 2 in the same way as for Theorem 2.

Theorem 4. Any constant-factor approximation algorithm for geometric max-
imum independent set that succeeds with probability at least 2/3 on streams of
2-intervals requires at least Ω(n) bits of memory, even if the 2-intervals are
separated.

5 Independent Sets in Streams of Unit-Height Rectangles

In this section, we study the independent set problem for a stream of unit height
arbitrary width rectangles. To conform with previous work we assume in this
section that one cell of memory can store one rectangle, i.e., one cell of memory
has Θ(log n) bits where all coordinates of the rectangles are assumed to be in
O(n). Cabello and Pérez-Lantero [11] studied the independent set problem for
streams of intervals on the real line and achieved the following result.

Theorem 5 (Theorem 5 [11]). Let I be a set of intervals in the real line
that arrive in a data stream. There is a data stream algorithm to compute a
2-approximation to the largest independent subset of I that uses O(α(I)) space
and handles each interval of the stream in O(log α(I)) time.

220 S. Bhore et al.

Using Theorem 5 we obtain a constant-factor approximation for finding the
largest independent set of rectangles in a stream of axis-aligned unit height
rectangles in one pass using O(α(R)) space. The below notation is similar to the
one used by Cabello and Pérez-Lantero [11].

We divide the y-axis into size two intervals. Similar to [11] we define windows
W� = [
,
 + 2). Then, we form two partitions W0 and W1 of the y-axis as
Wz = {Wz+2i | i ∈ Z} for z ∈ {0, 1}. We denote with Rz ⊆ R and z ∈ {0, 1}
the set of rectangles that is contained in any window of Wz. Observe, that every
rectangle is fully contained in only one of the two partitions.

Computing an independent set for the rectangles Rz now amasses to com-
puting independent sets for each set of rectangles lying in one window w� of
Wz. By only considering windows that contain at least one interval and using
Theorem 5 we can compute for every Wz and z ∈ {0, 1} a 2-approximation of
its largest independent set using α(Rz) space in one pass. Let α′(Rz) be such
a 2-approximation, α(Rz) the size of an optimal independent set of Rz, and
RI ⊆ R an optimal independent set of R, then it holds that

2max{α′(R0), α′(R1)} ≥ α′(R0) + α′(R1) ≥ 1
2
(α(R0) + α(R1))

≥ 1
2
(|RI ∩ R0| + |RI ∩ R1|) ≥ 1

2
|RI | ≥ 1

2
α(R).

From this it follows that max{α′(R0), α′(R1)} ≥ 1
4α(R).

Theorem 6. Let R be a set of axis-aligned unit height rectangles that arrive
in a data stream, there is an algorithm that compute a 4-approximation to the
maximum independent set of R, uses O(α(R)) space, and handles each rectangle
in polylog time.

Note, that this algorithm restricted to axis-aligned squares matches the
approximation factor of three due to Cormode et al. [18] since for unit inter-
vals we can use the 3

2 -approximation algorithm from Cabello et al. [11].

6 Clique in Streams of Intervals and Segments

We can make an identical statement as Theorem 2 for maximum clique instead
of maximum independent set by observing the complement graph of the con-
struction in Lemma 1.

Theorem 7. Any constant-factor approximation algorithm for geometric max-
imum clique that succeeds with probability at least 3/4 on segment streams using
p passes must use at least Ω(n/p) bits of memory, even when the endpoints of
the segments lie on two lines.

Proof. The complement graph of the construction of Lemma 1 is also a permu-
tation graph and admits the property that it contains either a clique of size 1 or
t. It is given by reversing the permutation (exactly mirroring the bottom) of the

On Streaming Algorithms for Geometric Independent Set and Clique 221

Fig. 3. Lower bound for Clique in permutation graphs, with t = 3 players. In this
example, xi

j = 1 for all players i ∈ [t].

construction in Lemma 1. This construction is illustrated in Fig. 3. It follows that
Lemma 1 also holds for geometric maximum clique instead of geometric maxi-
mum independent set. The theorem now follows from the proof of Theorem 2,
using maximum clique instead of maximum independent set. �	

For streams of intervals, we show a simple upper bound, using that there are
at most 2n different endpoints of intervals.

Theorem 8. Let I be a set of intervals in the real line that arrive in a data
stream. There is an algorithm to compute the largest clique size, ω(I), in 1 pass
using O(n log(ω(I)) bits of memory, using time O(n2) total. In a second pass,
the intervals that make up the clique can be recovered, which can be streamed
without extra memory use, or stored using O(ω(I) log n) bits of memory.

Proof. We keep a counter for every possible endpoint of an interval, which are
2n counters total. We keep the order of counters fixed, but need no labels for
a counter, because of the assumption that the range of endpoints is 1, . . . , 2n.
When an interval appears in the stream, we increment all counters that are
contained in the interval, including its endpoints. At the end of the stream, ω(I)
is given by the largest counter, as this coordinate is a witness to ω(I) intervals co-
intersecting. This is the correct maximum, as the number of intersecting intervals
can only change at an endpoint of an interval.

In the second pass, we can recover the intervals that make up the clique
can be recovered by pushing every interval that overlaps the coordinate of the
maximum counter found in the first pass to the output. �	

The result of Theorem 8 is nearly tight, as the construction of Theorem 7
can also be constructed as a stream of unit intervals.

7 Conclusion

We studied the geometric independent set and clique problems for a variety of
geometric objects. Interestingly, we showed that the type of geometric object

222 S. Bhore et al.

used for the implicit stream of a geometric intersection graph can make a sub-
stantial difference even for simple objects like segments and intervals. This raises
the question if such a difference also exists for other types of objects. Moreover,
the complexity of finding an independent set in a stream of arbitrary rectangles
remains open. Finally, studying streams of geometric objects in other streaming
models, such as turnstile streams, provides an interesting direction for future
research.

References

1. Agarwal, P.K., van Kreveld, M.J., Suri, S.: Label placement by maximum inde-
pendent set in rectangles. Comput. Geom.: Theory Appl. 11(3–4), 209–218 (1998).
https://doi.org/10.1016/S0925-7721(98)00028-5

2. Agarwal, P.K., Krishnan, S., Mustafa, N.H., Venkatasubramanian, S.: Stream-
ing geometric optimization using graphics hardware. In: Di Battista, G., Zwick,
U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 544–555. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-39658-1 50

3. Agarwal, P.K., Mustafa, N.H.: Independent set of intersection graphs of convex
objects in 2D. Comput. Geom.: Theory Appl. 34(2), 83–95 (2006). https://doi.
org/10.1016/j.comgeo.2005.12.001

4. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999). https://doi.org/
10.1006/jcss.1997.1545

5. Bakshi, A., Chepurko, N., Woodruff, D.P.: Weighted maximum independent set of
geometric objects in turnstile streams. In: Proceedings of the Annual International
Conference on Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2020). LIPIcs, vol. 176, pp.
64:1–64:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://
doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.64

6. Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM J.
Comput. 15(4), 1054–1068 (1986). https://doi.org/10.1137/0215075

7. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach
to approximating resource allocation and scheduling. J. ACM 48(5), 1069–1090
(2001). https://doi.org/10.1145/502102.502107

8. Bar-Yehuda, R., Halldórsson, M.M., Naor, J., Shachnai, H., Shapira, I.: Schedul-
ing split intervals. SIAM J. Comput. 36(1), 1–15 (2006). https://doi.org/10.1137/
S0097539703437843

9. van Bevern, R., Mnich, M., Niedermeier, R., Weller, M.: Interval scheduling and col-
orful independent sets. J. Sched. 18(5), 449–469 (2014). https://doi.org/10.1007/
s10951-014-0398-5

10. Bhore, S., Cardinal, J., Iacono, J., Koumoutsos, G.: Dynamic geometric indepen-
dent set. CoRR abs/2007.08643 (2020). https://arxiv.org/abs/2007.08643

11. Cabello, S., Pérez-Lantero, P.: Interval selection in the streaming model. Theor.
Comput. Sci. 702, 77–96 (2017). https://doi.org/10.1016/j.tcs.2017.08.015

12. Cardinal, J., Iacono, J., Koumoutsos, G.: Worst-case efficient dynamic geomet-
ric independent set. In: Proceedings of the 29th Annual European Symposium
on Algorithms (ESA 2021). LIPIcs, vol. 204, pp. 25:1–25:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ESA.2021.
25

https://doi.org/10.1016/S0925-7721(98)00028-5
https://doi.org/10.1007/978-3-540-39658-1_50
https://doi.org/10.1016/j.comgeo.2005.12.001
https://doi.org/10.1016/j.comgeo.2005.12.001
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.64
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.64
https://doi.org/10.1137/0215075
https://doi.org/10.1145/502102.502107
https://doi.org/10.1137/S0097539703437843
https://doi.org/10.1137/S0097539703437843
https://doi.org/10.1007/s10951-014-0398-5
https://doi.org/10.1007/s10951-014-0398-5
https://arxiv.org/abs/2007.08643
https://doi.org/10.1016/j.tcs.2017.08.015
https://doi.org/10.4230/LIPIcs.ESA.2021.25
https://doi.org/10.4230/LIPIcs.ESA.2021.25

On Streaming Algorithms for Geometric Independent Set and Clique 223

13. Chakrabarti, A.: CS49: data stream algorithms lecture notes (2020). http://www.
cs.dartmouth.edu/ac/Teach/data-streams-lecnotes.pdf

14. Chakrabarti, A., Khot, S., Sun, X.: Near-optimal lower bounds on the multi-party
communication complexity of set disjointness. In: 18th Annual IEEE Conference
on Computational Complexity (Complexity 2003), Aarhus, Denmark, 7–10 July
2003, pp. 107–117. IEEE Computer Society (2003). https://doi.org/10.1109/CCC.
2003.1214414

15. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent
set of pseudo-disks. Discret. Comput. Geom. 48(2), 373–392 (2012). https://doi.
org/10.1007/s00454-012-9417-5

16. Chen, X., Jayaram, R., Levi, A., Waingarten, E.: New streaming algorithms for
high dimensional EMD and MST. In: Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing (STOC 2022), pp. 222–233. ACM
(2022). https://doi.org/10.1145/3519935.3519979

17. Compton, S., Mitrovic, S., Rubinfeld, R.: New partitioning techniques and faster
algorithms for approximate interval scheduling. CoRR abs/2012.15002 (2020).
https://arxiv.org/abs/2012.15002

18. Cormode, G., Dark, J., Konrad, C.: Independent sets in vertex-arrival streams. In:
Proceedings of the 46th International Colloquium on Automata, Languages, and
Programming, (ICALP 2019). LIPIcs, vol. 132, pp. 45:1–45:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ICALP.
2019.45

19. Czumaj, A., Jiang, S.H., Krauthgamer, R., Veselý, P.: Streaming algorithms
for geometric steiner forest. CoRR abs/2011.04324 (2020). https://arxiv.org/abs/
2011.04324

20. Emek, Y., Halldórsson, M.M., Rosén, A.: Space-constrained interval selec-
tion. ACM Trans. Algorithms 12(4), 51:1–51:32 (2016). https://doi.org/10.1145/
2886102

21. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for
geometric intersection graphs. SIAM J. Comput. 34(6), 1302–1323 (2005). https://
doi.org/10.1137/S0097539702402676

22. Fox, J., Pach, J.: Computing the independence number of intersection graphs. In:
Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2011), pp. 1161–1165. SIAM (2011)

23. Frahling, G., Sohler, C.: Coresets in dynamic geometric data streams. In: Proceed-
ings of the 37th Annual ACM Symposium on Theory of Computing (STOC 2005),
pp. 209–217. ACM (2005). https://doi.org/10.1145/1060590.1060622

24. Gálvez, W., Khan, A., Mari, M., Mömke, T., Pittu, M.R., Wiese, A.: A 3-
approximation algorithm for maximum independent set of rectangles. In: Proceed-
ings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, (SODA 2022),
pp. 894–905. SIAM (2022). https://doi.org/10.1137/1.9781611977073.38

25. Gavril, F.: Algorithms for a maximum clique and a maximum independent set
of a circle graph. Networks 3(3), 261–273 (1973). https://doi.org/10.1002/net.
3230030305

26. Gavruskin, A., Khoussainov, B., Kokho, M., Liu, J.: Dynamic algorithms for
monotonic interval scheduling problem. Theor. Comput. Sci. 562, 227–242 (2015).
https://doi.org/10.1016/j.tcs.2014.09.046

27. Halldórsson, B.V., Halldórsson, M.M., Losievskaja, E., Szegedy, M.: Streaming
algorithms for independent sets. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 641–652.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14165-2 54

http://www.cs.dartmouth.edu/ac/Teach/data-streams-lecnotes.pdf
http://www.cs.dartmouth.edu/ac/Teach/data-streams-lecnotes.pdf
https://doi.org/10.1109/CCC.2003.1214414
https://doi.org/10.1109/CCC.2003.1214414
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.1145/3519935.3519979
https://arxiv.org/abs/2012.15002
https://doi.org/10.4230/LIPIcs.ICALP.2019.45
https://doi.org/10.4230/LIPIcs.ICALP.2019.45
https://arxiv.org/abs/2011.04324
https://arxiv.org/abs/2011.04324
https://doi.org/10.1145/2886102
https://doi.org/10.1145/2886102
https://doi.org/10.1137/S0097539702402676
https://doi.org/10.1137/S0097539702402676
https://doi.org/10.1145/1060590.1060622
https://doi.org/10.1137/1.9781611977073.38
https://doi.org/10.1002/net.3230030305
https://doi.org/10.1002/net.3230030305
https://doi.org/10.1016/j.tcs.2014.09.046
https://doi.org/10.1007/978-3-642-14165-2_54

224 S. Bhore et al.

28. H̊astad, J.: Clique is hard to approximate within n1−ε. In: Proceedings of the 37th
Annual Symposium on Foundations of Computer Science (FOCS 1996), pp. 627–
636. IEEE Computer Society (1996). https://doi.org/10.1109/SFCS.1996.548522

29. Henzinger, M., Neumann, S., Wiese, A.: Dynamic approximate maximum inde-
pendent set of intervals, hypercubes and hyperrectangles. In: Proceedings of the
36th International Symposium on Computational Geometry (SoCG 2020). LIPIcs,
vol. 164, pp. 51:1–51:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020).
https://doi.org/10.4230/LIPIcs.SoCG.2020.51

30. Indyk, P.: Streaming algorithms for geometric problems. In: Lodaya, K., Mahajan,
M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 32–34. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30538-5 3

31. Trotter, L.E., Jr.: Algorithmic graph theory and perfect graphs, by Martin C.
Golumbic, academic, New York, 284 pp. price: $34.00. Networks 13(2), 304–305
(1983). https://doi.org/10.1002/net.3230130214

32. Kane, D.M., Nelson, J., Woodruff, D.P.: An optimal algorithm for the distinct
elements problem. In: Proceedings of the 29th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS 2010), pp. 41–52. ACM
(2010). https://doi.org/10.1145/1807085.1807094

33. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a Sym-
posium on the Complexity of Computer Computations. The IBM Research Sym-
posia Series, pp. 85–103. Plenum Press, New York (1972). https://doi.org/10.1007/
978-1-4684-2001-2 9

34. Kleinberg, J.M., Tardos, É.: Algorithm Design. Addison-Wesley, Boston (2006)
35. Kratochv́ıl, J., Nešetřil, J.: Independent set and clique problems in intersection-

defined classes of graphs. Comment. Math. Univ. Carol. 31(1), 85–93 (1990)
36. McGregor, A.: Graph stream algorithms: a survey. SIGMOD Rec. 43(1), 9–20

(2014). https://doi.org/10.1145/2627692.2627694
37. Mitchell, J.S.B.: Approximating maximum independent set for rectangles in the

plane. In: Proceedings of the 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, pp. 339–350. IEEE (2021). https://doi.org/10.
1109/FOCS52979.2021.00042

38. Muthukrishnan, S., et al.: Data streams: algorithms and applications. Found.
Trends R© Theor. Comput. Sci. 1(2), 117–236 (2005)

39. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory Comput. 3(1), 103–128 (2007). https://doi.org/10.
4086/toc.2007.v003a006

https://doi.org/10.1109/SFCS.1996.548522
https://doi.org/10.4230/LIPIcs.SoCG.2020.51
https://doi.org/10.1007/978-3-540-30538-5_3
https://doi.org/10.1002/net.3230130214
https://doi.org/10.1145/1807085.1807094
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1109/FOCS52979.2021.00042
https://doi.org/10.1109/FOCS52979.2021.00042
https://doi.org/10.4086/toc.2007.v003a006
https://doi.org/10.4086/toc.2007.v003a006

Approximating Length-Restricted Means
Under Dynamic Time Warping

Maike Buchin1 , Anne Driemel2,3 , Koen van Greevenbroek4 ,
Ioannis Psarros5 , and Dennis Rohde1(B)

1 Faculty of Computer Science, Ruhr-University Bochum, Bochum, Germany
{maike.buchin,dennis.rohde-t1b}@rub.de

2 Hausdorff Center for Mathematics, Bonn, Germany
3 University of Bonn, Bonn, Germany

driemel@cs.uni-bonn.de
4 Department of Computer Science, UiT The Arctic University of Norway,

Tromsø, Norway
koen.v.greevenbroek@uit.no

5 Athena Research Center, Marousi, Greece
ipsarros@di.uoa.gr

Abstract. We study variants of the mean problem under the p-Dynamic
Time Warping (p-DTW) distance, a popular and robust distance mea-
sure for sequential data. In our setting we are given a set of finite point
sequences over an arbitrary metric space and we want to compute a
mean point sequence of given length that minimizes the sum of p-DTW
distances, each raised to the qth power, between the input sequences
and the mean sequence. In general, the problem is NP-hard and known
not to be fixed-parameter tractable in the number of sequences. On the
positive side, we show that restricting the length of the mean sequence
significantly reduces the hardness of the problem. We give an exact algo-
rithm running in polynomial time for constant-length means. We explore
various approximation algorithms that provide a trade-off between the
approximation factor and the running time. Our approximation algo-
rithms have a running time with only linear dependency on the number
of input sequences. In addition, we use our mean algorithms to obtain
clustering algorithms with theoretical guarantees.

1 Introduction

The p-Dynamic Time Warping distance – in short p-DTW – is a popular dis-
tance measure for temporal data sequences, which has been studied and applied
extensively over the past decades. While it was first applied to speech recognition
[30], it also showed effective for other kinds of sequential data and now there is a

I. Psarros—The author was partially supported by the European Union’s Horizon
2020 Research and Innovation programme, under the grant agreement No. 957345:
“MORE”. Part of this work was done while the author was a postdoctoral researcher
at the Hausdorff Center for Mathematics and the University of Bonn, Germany.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Chalermsook and B. Laekhanukit (Eds.): WAOA 2022, LNCS 13538, pp. 225–253, 2022.
https://doi.org/10.1007/978-3-031-18367-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18367-6_12&domain=pdf
http://orcid.org/0000-0002-3446-4343
http://orcid.org/0000-0002-1943-2589
http://orcid.org/0000-0002-6105-2846
http://orcid.org/0000-0002-5079-5003
http://orcid.org/0000-0001-8984-1962
https://doi.org/10.1007/978-3-031-18367-6_12

226 M. Buchin et al.

broad variety of applications in numerous domains, cf. [1,4,13,21,25,26,37]. Its
particular strength is the ability to handle differences in the length and in the
temporal properties (e.g. phase or sampling rates) of the data. Furthermore, it
less sensitive to outliers in the sequences, e.g. from measurement errors or noise,
because it is realized as a sum of point-to-point distances as compared to other
distance measures which are correlated with the maximum point-to-point dis-
tance. It is based on monotonic alignments of the sequences, i.e., every element
of the first sequence is paired to an element of the second sequence in a mono-
tonic fashion (along the temporal axis). To compensate differences in length,
samplings rates or in phase, several elements of the first sequence can be paired
to a single element of the second sequence and vice versa. Such an alignment is
called a warping and the p-DTW is the pth root of the sum of distances, each
raised to the pth power, between all pairs of elements determined by an optimal
warping, i.e., a warping that minimizes said quantity. The distances between ele-
ments are determined by an underlying space, which itself is determined by the
application at hand. The p-DTW can be computed by a dynamic program with
running time quadratic in the lengths of the given sequences, and it cannot be
computed in strongly subquadratic time unless the Exponential Time Hypoth-
esis is false [2,8]. Apart from its apparent benefits, p-DTW has the drawback
that it is not a metric since it does not fulfill the identity of indiscernibles nor
the triangle inequality. This rules out a wealth of techniques that were developed
for proper metrics.

In this work, we consider the problem of computing a mean under p-DTW.
Here, we are given a finite set of n point sequences over an arbitrary metric
space, each of complexity, i.e., the number of elements of the sequence, bounded
by a number m and we want to compute a point sequence (the mean) that
minimizes the sum of p-DTW distances, each raised to the qth power, between
the given sequences and the mean.1 We call this problem the unrestricted (p, q)-
mean problem. It is known to be NP-hard [10,12] and all known algorithms
that solve it either suffer from exponential running time, only work for binary
alphabets, or are of heuristic nature [6,28,32].

We show that when we restrict the complexity of the mean to be bounded by
some constant � – we call this the restricted (p, q)-mean problem – the problem
becomes tractable, i.e., there exist polynomial time approximation algorithms.
This restriction also comes with a practical motivation, i.e., to suppress overfit-
ting, see also the discussion in [5].

1.1 Related Work

Among many practical approaches for the problem of computing a mean, one
very influential heuristic is the DTW Barycentric Average (DBA) method, as
formalized by Petitjean, Ketterlin and Gançarski [28]. The core idea behind DBA
is a Lloyd’s style (k-means) iterative strategy, which has been rediscovered many

1 For q = 1 this is an adaption of the Euclidean median and for q = 2 an adaption of
the Euclidean mean.

Approximating Length-Restricted Means Under Dynamic Time Warping 227

times for this problem in the past (see e.g. [3,18,29]). DBA iteratively improves
the solution as follows: given a candidate average sequence c = (c1, . . . , c�), it first
computes the warpings between c and all input sequences, and then given each
set of input vertices Si matched with the same vertex ci, it substitutes ci with
the mean of Si. DBA has inspired many recent solutions that are successful in
practice [15,20,24,27,33]. However, it does not give any guarantees. Just like the
k-means algorithm, it may even converge to a local optimum that is arbitrarily
far from the global optimum in terms of the (p, q)-mean target function.

There are few results in the literature with formal guarantees on the running
time or the quality of the solution. Brill et al. [6,7] presented an algorithm for
solving the unrestricted (2, 2)-mean problem defined over Q with the Euclidean
distance, with an asymptotic bound on the time complexity. Their algorithm is
based on dynamic programming, and computes the (unrestricted) (2, 2)-mean,
in time O(m2n+12nn). The algorithm can be slightly modified, to compute a
restricted (2, 2)-mean. Brill et al. [6,7] also show that the unrestricted (2, 2)-
mean problem defined over {0, 1} with the Euclidean distance can be solved in
O(nm3) time. This was later improved by Schaar, Froese and Niedermeier [32]
to O(nm1.87) time.

All previous hardness results concern the exact computation of the (p, q)-
mean. Bulteau, Froese and Niedermeier [12] proved that the (2, 2)-mean problem
defined over Q with the Euclidean distance is NP-hard and W[1]-hard with the
number of input sequences n as the parameter. Moreover, they show that the
problem cannot be solved in time O(f(n)) · mo(n) for any computable function
f unless the Exponential Time Hypothesis (ETH) fails. Buchin, Driemel and
Struijs [10] presented an alternative proof of the above statements, which more
generally applies to the unrestricted (p, q)-mean problem for any p, q ∈ N.

1.2 Overview of Results

In this section we give an overview of our results.2 Since, we mainly study the
case p = q, we shorthand call the (p, p)-mean, the p-mean problem. In Sect. 2.1,
we present an exact algorithm with polynomial running time for the problem of
computing a restricted (2, 2)-mean in Euclidean space. Our approach is based on
a decomposition of the solution space by an arrangement of polynomial surfaces
such that each cell corresponds to a set of means with uniquely defined optimal
warpings to all input sequences. The algorithm has running time O(n2d�m8d�2),
where the input are n sequences of m points in R

d. Note that the running time
is exponential in � and d. In the remainder of the paper, our goal is to improve
upon this with the help of approximation and randomization techniques. We will
show that linear dependency in n is possible.

In Sect. 2.2, we present a randomized constant-factor approximation algo-
rithm for the restricted p-mean problem that works for sequences from any fixed
2 An earlier version of this manuscript claimed hardness of approximation for the prob-

lem of computing the mean under dynamic time warping. However, the proof turned
out to be flawed. We leave it as an open problem to show hardness of approximation
for this problem.

228 M. Buchin et al.

metric space. As such, this result is applicable to the classical median problem
under the 1-DTW distance and the classical mean problem under the 2-DTW
distance. The main idea is to uniformly sample from the union of points of all
given sequences, then enumerate all sequences of complexity � from the sampled
vertices and return the sequence with the lowest cost. We also show how to
derandomize the algorithm.

In Sect. 2.4 we present a (1 + ε)-approximation algorithm for the restricted
(p, 1)-mean problem for point sequences defined over the Euclidean space. This
algorithm is based on an exhaustive search over a carefully constructed set of
candidate means. The crucial ingredients for this are presented in Sect. 2.3: an
efficient approximation algorithm for simplification under p-DTW and a weak tri-
angle inequality for p-DTW. The result holds for the important case of sequences
that stem from a Euclidean space. A nice property of this result is that it pro-
vides a complete trade-off between the approximation factor and the running
time.

Finally, in Sect. 3, we briefly discuss an application of the newly developed
techniques to the problem of clustering for p-DTW distances. In particular, we
can use the random sampling techniques developed in Sects. 2.2 and 2.3, in com-
bination with a known algorithmic scheme that reduces the computation of k-
medians to a problem of computing 1-median candidates for an arbitrary subset
of the input set.

1.3 Preliminaries

In the following d ∈ N is an arbitrary constant. For n ∈ N we define [n] =
{1, . . . , n}. Let X = (X, ρ) be a metric space. For x ∈ X and r ∈ R≥0 we denote
by B(x, r) = {y ∈ X | ρ(x, y) ≤ r} the ball of radius r centered at x. We define
sequences of points over X .

Definition 1. A point sequence σ over X is a tuple (σ1, . . . , σm) ∈ Xm, where
m ∈ N>1 is called its complexity, denoted by |σ|, and σ1, . . . , σm are called its
vertices.

By X∗ =
⋃∞

i=1 Xi we define the set of all point sequences over X and by
X≤m =

⋃m
i=1 Xi we define the subset of point sequences of complexity at most

m. The concatenation of a point sequence π = (π1, . . . , πm) with a sequence
τ = (τ1, . . . , τm) is denoted by π ⊕ τ and is defined as the point sequence
(π1, . . . , πm, τ1, . . . , τm). We define the p-Dynamic Time Warping distance.

Definition 2. For m1,m2 ∈ N>1, let Wm1,m2 denote the set of all (m1,m2)-
warpings, that is, the set of all sequences (i1, j1), . . . , (in, jn) with

– i1 = j1 = 1, in = m1, jn = m2 and
– (ik − ik−1, jk − jk−1) ∈ {(0, 1), (1, 0), (1, 1)} for each k ∈ {2, . . . , n}.

Approximating Length-Restricted Means Under Dynamic Time Warping 229

For p ∈ [1,∞) and σ = (σ1, . . . , σm1) ∈ Xm1 , τ = (τ1, . . . , τm2) ∈ Xm2 the
p-Dynamic Time Warping distance is defined as

dDTWp(σ, τ) = min
W∈Wm1,m2

⎛

⎝
∑

(i,j)∈W

ρ(σi, τj)p

⎞

⎠

1/p

.

Here we assume that ρ(·, ·) can be evaluated in constant time.3

Let σ = (σ1, . . . , σm1), τ = (τ1, . . . , τm2) be point sequences over X of com-

plexity m1 and m2. We call a warping W ∈ arg min
W∈Wm1,m2

(∑
(i,j)∈W ρ(σi, τj)p

)1/p

an optimal p-warping between σ and τ .

Definition 3. The restricted (p, q)-mean problem is defined as follows, where
� ∈ N>1 and p, q ∈ [1,∞) are fixed (constant) parameters of the problem: given
a set T = {τ1, . . . , τn} ⊆ X≤m of point sequences, compute a point sequence
c ∈ X≤�, such that costq

p(T, c) =
∑n

i=1 dDTWp(c, τi)q is minimal.

If p is clear from the context, we drop it from our notation. By the unrestricted
(p, q)-mean problem we define the problem that is similar to the restricted (p, q)-
mean problem with the only difference that we compute a mean sequence c ∈ X∗.
We mainly study the case that p = q. Therefore, we shorthand call the restricted,
respectively unrestricted, (p, p)-mean problem the restricted, respectively unre-
stricted, p-mean problem. We emphasize that these problems are prevalent in
the literature.

2 Tractability of the Restricted Mean Problem

We study exact and approximation algorithms for the restricted p-mean and
(p, 1)-mean problems.

2.1 Exact Computation of a Restricted 2-Mean in Euclidean Space

In the following, we make use of a simplified structure of the solution space,
which holds in the case p = q. This is captured in the notion of sections, which
we define as follows.

Definition 4 (sections). Let T = {τ1, . . . , τn} ⊆ X≤m be a set of point
sequences and c = (c1, . . . , c�) ∈ X� be a point sequence. For i ∈ [n] and
p ∈ [1,∞), let Wi be an optimal p-warping between c and τi. For j ∈ [�] we define
the jth section of c with respect to T (and W1, . . . ,Wn): Sj(c, T,W1, . . . ,Wn) =
{τi,k | i ∈ [n], (j, k) ∈ Wi}, where τi,k is the kth vertex of τi.

3 This restriction is only for the sake of simplicity of presentation. Our results can be
easily extended to metric spaces that do not have a constant-time distance oracle.

230 M. Buchin et al.

If T is clear from the context, we omit it from the notation. Also, we will
always omit W1, . . . ,Wn from the notation, because the specific choice of optimal
p-warpings is not of interest. We will then write Sp

j (T, c) to clarify that the sec-
tions are defined with respect to optimal p-warpings. An immediate consequence
of this definition is the following identity:

costp
p(T, c) =

�∑

j=1

∑

v∈Sp
j (c,T)

ρ(cj , v)p,

where � denotes the complexity of c.
A central observation is that the vertices of an optimal restricted p-mean

c = (c1, . . . , c�′) must minimize the sum of distances, each raised to the pth power,
to the vertices in their section, i.e., for all j ∈ [�′]: cj ∈ arg min

w∈X

∑

v∈Sp
j (c,T)

ρ(w, v)p.

Using this, we obtain the following result.

Theorem 1. There exists an algorithm that, given a set T ⊂ (
Q

d
)≤m of n point

sequences, computes an optimal restricted 2-mean (defined over the Euclidean
distance) in time O(n2d�m8d�2).

The strategy is as follows. For the sake of simplicity, suppose that we want to
compute the best mean of complexity exactly �′ ∈ [�]. To compute the optimal
restricted 2-mean, it suffices to find the best mean for every �′ ∈ [�]. For a fixed
�′ ∈ [�], the main idea is to compute for any two warpings between a point
sequence of complexity �′ and an input point sequence, a polynomial function
whose sign indicates which of the warpings yields a smaller distance between
the sequences. These functions are then used to define an arrangement that
partitions the space

(
R

d
)�′

. The trick is that while there is an infinite number of

point sequences in
(
R

d
)�′

, to each input point sequence there are only O(m2�′
)

warpings and in each face of the arrangement the point sequences have the
same optimal warpings to the input point sequences. Therefore, for an arbitrary
point sequence from each face of the arrangement, we can compute the optimal
warpings to the input sequences and then use the resulting sections to compute
an optimal point sequence for these warpings, obtaining the optimal mean of
complexity exactly �′ when we eventually hit the face containing it. We use a
tool of computational algebraic geometry, namely an algorithm to compute a
stratification of

(
R

d
)�′

(which is a refinement of the arrangement), to compute
the arrangement and obtain an element of each face.

Before we now prove the theorem we note that the employed stratification
algorithm only works for polynomials with real algebraic coefficients. Therefore,
here we assume that the input point sequences have rational coordinates. This is
indeed a realistic assumption since physical computers are not capable of storing
arbitrary real numbers.

Approximating Length-Restricted Means Under Dynamic Time Warping 231

Proof (of Theorem 1).
To simplify our exposition, we restrict ourselves to means of complexity

exactly �′ ∈ [�], i.e. in the rest of the proof we describe an algorithm for comput-
ing an optimal mean of complexity exactly �′. The complete algorithm consists
of iteratively computing the optimal mean of complexity �′, for each �′ ∈ [�].

For each τ = (τ1, . . . , τ|τ |) ∈ T and all W1,W2 ∈ W�′,|τ | we define for c =

(c1, . . . , c�′) ∈ (
R

d
)�′

the polynomial function

Pτ,W1,W2(c) =

⎛

⎝
∑

(i,j)∈W1

‖ci − τj‖2
⎞

⎠ −
⎛

⎝
∑

(i,j)∈W2

‖ci − τj‖2
⎞

⎠ .

Clearly, iff W1 yields a smaller distance between c and τ than W2, then

Pτ,W1,W2(c) < 0

and iff W2 yields a smaller distance between c and τ than W2, then

Pτ,W1,W2(c) > 0.

Iff Pτ,W1,W2(c) = 0, both yield the same distance.
Let F = {Pτ,W1,W2 | τ ∈ T,W1,W2 ∈ W�′,|τ |} be the set of these polynomials.

The central observation is that if all functions in F have the same sign for any
c1, c2 ∈ (

R
d
)�′

, then c1 and c2 have the same optimal 2-warpings to the point
sequences in T . To see this, for each τ ∈ T let Wτ ∈ W�′,|τ | be an optimal
2-warping between c1 and τ . Clearly, Pτ,Wτ ,W (c1) ≤ 0 for all τ ∈ T and W ∈
W�′,|τ |. Now, if all functions in F have the same sign for c1 and c2 it must be
that Pτ,Wτ ,W (c2) ≤ 0 for all τ ∈ T and W ∈ W�′,|τ |. Thus, Wτ is an optimal
2-warping between c2 and τ for each τ ∈ T .

Now, we compute an arrangement of the zero sets of the polynomials in F

(cf. [22]), i.e., a partition of
(
R

d
)�′

into regions where all functions in F have
the same sign. To be precise, we compute a refinement of this arrangement,
namely a sign-invariant stratification of

(
R

d
)�′

consisting of O(|F |2d�′−2) cylin-
drical Tarski cells, which can be done in time O(|F |2d�′−1 log|F |) by [14, Theo-
rem 3.4]. This computation includes obtaining a sample point from each Tarski
cell and we discard all following sample points from a face of the arrangement
after obtaining the first one. For each sample c from some face of the arrange-
ment we first compute the optimal 2-warpings between c and the input point
sequences τ ∈ T in time O(nm). Second we compute all sections Sj(c) of c
and store the point sequence c′ = (c′

1, . . . , c
′
�′) consisting of the optimal means

c′
j = 1

|Sj(c)|
∑

v∈Sj(c)
v, for j ∈ [�′]. This takes time O(nm).

At some point, we obtain a sample from the face containing the optimal
restricted 2-mean c∗ = (c∗

1, . . . , c
∗
�′) (where c∗

j is the mean of Sj(c∗) for each j ∈
[�′]), which we return when we finally return the point sequence c′ that minimizes
the objective function. This takes time O(nmA), where A is the number of cells
in the arrangement.

232 M. Buchin et al.

To conclude the proof, note that for each τ ∈ T we have that |W�′,|τ || ≤ m2�′
,

thus |F | ≤ nm4�′
. Hence, A ≤

(
100nm4�′

�′d

)�′d
by [22, Theorem 6.2.1].

As we have already mentioned, we iteratively run the above algorithm to
compute means of complexity �′, for each �′ ∈ [�], in order to find an optimal
restricted 2-mean. Each iteration runs in time O(n2d�′

m8d�′2
). Since � is constant,

the running time is in O(n2d�m8d�2).

2.2 Constant-Factor Approximation of the Restricted p-Mean

We start by describing a simple approximation algorithm that reveals the basic
idea underlying the following algorithms. The algorithm relies on the following
observation. If p-DTW is defined over a metric, then the triangle inequality holds
for the point-to-point-distances in the sum that defines the p-DTW distance
(albeit not for p-DTW distance itself). Assume for simplicity that p = 1. In this
case, there always exists a 2-approximate mean that is formed by points from
the input sequences. Enumerating all possible such sequences, then, if the input
consists of n point sequences of length m, leads to an algorithm with running time
in O((nm)�+1), where � denotes the largest allowed complexity of the mean. This
approach also extends to other variants of the mean problem for different choices
of p and q (with varying approximation factors). One obvious disadvantage of
this simple algorithm is the high running time. In the following, we use similar
observations as above and show that the dependency on the number of input
sequences n can be improved to linear while still achieving approximation factors
close to 2.

Randomized Algorithm. We present a randomized constant-factor approxi-
mation algorithm for the restricted p-mean problem. The approximation factor
of the algorithm depends on p, and the best it can achieve is 2 + ε for p = 1
and 4 + ε for p = 2, which resemble the famous Euclidean median and mean
problems. The idea of the algorithm is to obtain for each j ∈ [�′] from the corre-
sponding section Sp

j (c, T) of an optimal restricted p-mean c = (c1, . . . , c�′) one of
the closest input vertices to cj . The obtained vertices in the corresponding order
form an approximate restricted p-mean. We formalize the idea in the following
lemma.

Lemma 1. Let T = {τ1 = (τ1,1, . . . , τ1,|τ1|), . . . , τn = (τn,1, . . . , τn,|τn|)} ⊆ X≤m

be a set of point sequences and let P =
⋃n

i=1

⋃|τi|
j=1{τi,j}. For any p ∈ [1,∞),

� ∈ N>1 and ε ∈ (0,∞) there exists an �′ ≤ � and balls B1, . . . , B�′ ⊆ P , of
cardinality at least εn

2p−1+ε each, such that every point sequence c′ = (c′
1, . . . , c

′
�′),

with c′
i ∈ Bi for each i ∈ [�′], is a (2p + ε)-approximate restricted p-mean for T .

Proof. Without loss of generality we assume that τ1,1, . . . , τ1,|τ1|, . . . , τn,1, . . . ,

τ|τn| are distinct points. Let c = (c1, . . . , c�′) ∈ X�′
be an optimal restricted

p-mean for T and for j ∈ [�′] let Sj = {sj,1, . . . , sj,nj
} = Sp

j (c) for brevity. Define

Approximating Length-Restricted Means Under Dynamic Time Warping 233

Δ(Sj) =
∑

v∈Sj

ρ(cj , v)p. We immediately have costp
p(T, c) =

∑�′

j=1 Δ(Sj). Now,

for j ∈ [�′], let πj be a permutation of the index set [nj], such that

ρ(cj , sj,π−1
j (1))

p ≤ · · · ≤ ρ(cj , sj,π−1
j (nj)

)p.

Let ε′ = ε
2p−1+ε . For the sake of simplicity, we assume that ε′n is inte-

gral. Further, for j ∈ [�′], we define Cj = {sj,π−1
j (1), . . . , sj,π−1

j (ε′n)}. We

have that ρ(cj , sj,π−1
j (ε′n))

p ≤ Δ(Sj)
|Sj |−(ε′n−1) by the fact that ρ(cj , sj,π−1

j (ε′n))
p

is of maximal value, iff ρ(cj , s
′)p = 0 for each s′ ∈ Cj \ {sj,π−1

j (ε′n)} and
ρ(cj , s

′)p = ρ(cj , sj,π−1
j (ε′n))

p for each s′ ∈ Sj \ Cj . For j ∈ [�′], we now define

Bj = {x ∈ P | ρ(cj , x)p ≤ ρ(cj , sj,π−1
j (ε′n))

p}

and by definition we have ρ(cj , x)p ≤ Δ(Sj)
|Sj |−ε′n+1 ≤ Δ(Sj)

|Sj |−ε′n for each x ∈ Bj and
j ∈ [�′]. Then let c′ = (c′

1, . . . , c
′
�′) be a point sequence with c′

j ∈ Bj for each
j ∈ [�′]. We bound its cost:

costp
p(T, c′) =

�′
∑

j=1

∑

v∈Sj

ρ(c′
j , v)p ≤

�′
∑

j=1

∑

v∈Sj

(ρ(cj , v) + ρ(cj , c
′
j))

p

≤
�′

∑

j=1

∑

v∈Sj

2p−1(ρ(cj , v)p + ρ(cj , c
′
j)

p)

≤ 2p−1
�′

∑

j=1

∑

v∈Sj

(

ρ(cj , v)p +
Δ(Sj)

|Sj | − ε′n

)

≤ 2p−1 costp
p(T, c) + 2p−1

�′
∑

j=1

∑

v∈Sj

Δ(Sj)
(1 − ε′)|Sj |

=
(

2p−1 +
2p−1

1 − ε′

)

costp
p(T, c) = (2p + ε) costp

p(T, c).

The first inequality follows from the triangle-inequality and the last inequality
holds, because a vertex from each τi ∈ T must be warped to each cj ∈ c, thus
|Sj | ≥ n for each j ∈ [�′].

Now we present the first algorithm. The idea is to uniformly sample from
the set of all vertices of all point sequences, to obtain at least one vertex from
each ball guaranteed by the previous lemma, with high probability. After the
sampling, the algorithm enumerates all point sequences of at most � elements
from the sample and returns a point sequence with lowest cost.

234 M. Buchin et al.

Algorithm 1. Restricted p-Mean Constant-Factor Approximation
1: procedure mean-C(T = {(τ1,1, . . . , τ1,|τ1|), . . . , (τn,1, . . . , τn,|τn|)}, δ, ε, p)

2: P ← ⋃n
i=1

⋃|τi|
j=1{τi,j}

3: S ← sample
⌈

m(ln(�)+ln(1/δ))

ε/(2p−1+ε)

⌉
points from P

uniformly and independently at random with replacement
4: C ← S≤�

5: return an arbitrary element from arg min
c∈C

costp
p(T, c)

The correctness of Algorithm 1 follows by an application of Lemma 1.

Theorem 2. Given a set T = {τ1, . . . , τn} ⊆ X≤m of point sequences (defined
over any metric), three parameters δ ∈ (0, 1), ε ∈ (0,∞) and p ∈ [1,∞), Algo-
rithm 1 returns with probability at least 1 − δ a (2p + ε)-approximate restricted

p-mean for T , in time O

(

nm�+1 ln(1/δ)�
(
1 + 2p−1

ε

)�
)

.

Proof. For the given ε, let ε′ = ε
2p−1+ε and let B1, . . . , B�′ , �′ ≤ �, be the balls

guaranteed by Lemma 1. Recall that each ball has size at least ε′n. For each
i ∈ [�′] and s ∈ S we have

Pr[s
∈ Bi] ≤ (1 − ε′n
|P |) ≤ (1 − ε′n

nm
) = (1 − ε′

m
) ≤ exp(−ε′/m).

By independence, for each i ∈ [�′] we have

Pr[Bi ∩ S = ∅] ≤ exp(−ε′/m)m(ln(�)−ln(δ))
ε′ � ≤ δ/�.

Using a union bound we conclude that with probability at least 1 − δ, S
contains at least one element of Bi, for each i ∈ [�′], and thus Algorithm 1
returns a (2p + ε)-approximate restricted p-mean for T with probability at least
1 − δ by Lemma 1.

The running time of the algorithm is dominated by computing the cost of all
point sequences of complexity at most � over S. Since |S≤�| is in O

(
ln(1/δ)�m�

(ε′)�

)
=

O
(
ln(1/δ)�m� (2p−1+ε)�

ε�

)
and every distance can be computed in time O(m), this

takes time O
(
ln(1/δ)�m�+1n (2p−1+ε)�

ε�

)
.

Derandomization. In this section, we consider finite metric spaces (X, ρ) for
which the set of all metric balls B = {B(x, r) | x ∈ X, r ∈ R≥0} forms a range
space (X,B) with bounded VC dimension D. We present a deterministic algo-
rithm for the restricted p-mean problem which is applicable under the additional
assumption that there is a subsystem oracle for (X,B). We show that this is the
case for the Euclidean metric. Note that our algorithm depends on the existence
of a subsystem oracle, which is not always obvious for a given metric.

Approximating Length-Restricted Means Under Dynamic Time Warping 235

We formally define range spaces and the associated concepts. A range space
is defined as a pair of sets (X,R), where X is the ground set and R ⊆ 2X is the
range set. For Y ⊆ X, we denote R|Y = {R ∩ Y | R ∈ R} and if R|Y contains
all subsets of Y , then Y is shattered by R. A measure of the combinatorial
complexity of such a range space is the VC dimension.

Definition 5 (VC dimension). The Vapnik-Chervonenkis dimension [31,34,
35] of (X,R) is the maximum cardinality of a shattered subset of X.

Range spaces need not to be finite and can be discretized by means of ε-nets.

Definition 6 (ε-net). A set N ⊂ X is an ε-net for (X,R) if for any range
R ∈ R, it holds that R ∩ N
= ∅ if |R ∩ X| ≥ ε|X|.

To compute ε-nets deterministically, we need a subsystem oracle, which we
now define.

Definition 7 (subsystem oracle). Let (X,R) be a finite range space. A sub-
system oracle is an algorithm which for any Y ⊆ X, lists all sets in R|Y in time
O(|Y |D+1), where D is the VC dimension of (X,R).

We use the following theorem to obtain ε-nets when provided with a subsys-
tem oracle.

Theorem 3 ([9, Theorem 2.1]). Let (X,R) be a range space with finite ground
set and VC dimension D, and ε > 0 be a given parameter. Assume that there is a
subsystem oracle for (X,R). Then an ε-net of size O

(D
ε log D

ε

)
can be computed

deterministically in time O(D3D) · (
1
ε log 1

ε

)D · |X|.
The following algorithm is a modification of Algorithm 1. We replace the

sampling step with a computation of an (ε/m)-net. Since the balls guaranteed
by Lemma 1 are of appropriate size, the (ε/m)-net stabs all of them and by
enumeration of all point sequences of at most � points from the (ε/m)-net, we
again find an approximate restricted p-mean.

Algorithm 2. Restricted p-Mean Constant-Factor Approximation
1: procedure mean-C-D(T = {(τ1,1, . . . , τ1,|τ1|), . . . , (τn,1, . . . , τn,|τn|)}, ε, p)

2: ε′ ← ε
2p−1+ε

, P ← ⋃n
i=1

⋃|τi|
j=1{τi,j}

3: S ← compute an (ε′/m)-net of (P, B) � B = {B(x, r) | x ∈ X, r ∈ R≥0}
4: C ← S≤�

5: return an arbitrary element from arg min
c∈C

costp
p(T, c)

The correctness of Algorithm 2 follows from Definition 6.

Theorem 4. Given a set T ⊆ X≤m of n point sequences, parameters ε ∈ (0,∞),
and p ∈ [1,∞), Algorithm 2 returns a (2p + ε)-approximate restricted p-mean
for T .

236 M. Buchin et al.

Proof. By Lemma 1, for any ε ∈ (0,∞) there exist balls B1, . . . , B�′ ⊆ P , �′ ≤ �
of cardinality at least ε′n each, such that any point sequence c′ = (c′

1, . . . , c
′
�′),

with c′
i ∈ Bi for each i ∈ [�′], is a (2p + ε)-approximate restricted p-mean for

T , where ε′ = ε
2p−1+ε . Since we compute an (ε′/m)-net of P and |P | ≤ nm, S

contains at least one point from each of B1, . . . , B�′ by Definition 6. Hence, S≤�

contains a (2p + ε)-approximate restricted p-mean for T .

We now turn to the Euclidean setting. First, we prove that there exists a
subsystem oracle for (X,B), when X ⊂ R

d is a finite subset of the d-dimensional
Euclidean space.

Lemma 2. There is a subsystem oracle for the range space (X,B), where X is
a finite subset of Rd.

Proof. The VC dimension of (P,B) is bounded by d+1, see [17]. For any Y ⊆ P ,
we need to compute the set B|Y explicitly in time O(|Y |d+2). We first apply the

standard lifting φ : (x1, . . . , xd) �→
(
x1, . . . , xd,

∑d
i=1 x2

i

)
. A point p ∈ Y belongs

to some ball B ∈ B, with center c = (c1, . . . , cd) ∈ R
d and radius r > 0,

if and only if φ(p) lies below the hyperplane hB , where hB is the hyperplane
defined by the equation 〈aB , x〉 = bB , where aB = (2c1, 2c2, . . . 2cd, 1) and bB =
r2 − ∑d

i=1 c2i . Notice that hB is nonvertical by definition. Then we dualize: for
any point φ(p) = (y1, . . . , yd+1), D(φ(p)) = {(x1, . . . , xd+1) ∈ R

d+1 | xd+1 =
∑d

i=1 xiyi − yd+1} is a nonvertical hyperplane in R
d+1 and for any nonvertical

hyperplane hB , D−1(hB) is a point in R
d+1. A standard fact about duality is that

a point φ(p) lies below a hyperplane hB if and only if the hyperplane D(φ(p))
lies above point D−1(hB). Finally we construct the arrangement of hyperplanes
in the dual space in time O(|Y |d+1), using the algorithm in [16]. For each of
the at most O(|Y |d+1) cells, we return a subset X ⊆ Y corresponding to the
hyperplanes lying above. The overall running time is O(|Y |d+2).

Then we can analyze the running time of Algorithm 2 in the Euclidean set-
ting.

Theorem 5. Given a set T ⊂ (
R

d
)≤m of n point sequences (defined over the

Euclidean space), parameters ε ∈ (0,∞), and p ∈ [1,∞), Algorithm 2 can
be implemented to run in O

(
nm

((
m
ε′ log m

ε′
)d+1 +

(
m
ε′ log m

ε′
)�

))
deterministic

time, where ε′ = ε
2p−1+ε .

Proof. The VC dimension of the range space (P,B) is bounded by d+1, see [17].
By Lemma 2, we can use Theorem 3 to compute an (ε′/m)-net S of (P,B), with
size |S| = O

(
m
ε′ log

(
m
ε′

))
, in time O

(
nm

(
m
ε′ log

(
m
ε′

))d+1
)
. We then compute the

dDTWp distance of any of the |S≤�| candidates with the n input point sequences
in time O

(|S|� · nm
)
.

Approximating Length-Restricted Means Under Dynamic Time Warping 237

2.3 Simplifications and the Triangle Inequality

In this section, we give an efficient approximation algorithm for simplification
under p-DTW and show that a weak triangle inequality for p-DTW holds, which
improves upon previous similar statements [19] when one bounds the DTW
distance of two short point sequences.

These results are then used in Sect. 2.4, where we provide an algorithm for
the restricted (p, 1)-mean problem, which achieves an approximation factor of
(1 + ε), for any ε ∈ (0,∞). The result holds for the important case of sequences
lying in the Euclidean space. In particular, we will bound the expected cost
of a mean obtained by randomly sampling an input point sequence and then
computing its approximate minimum-error simplification.

Minimum-Error Simplification. We first define the notion of simplification
of a point sequence under the p-DTW distance.

Definition 8. Let π ∈ X∗. An (α, �)-simplification of π, under the dDTWp dis-
tance, is a point sequence π̃ ∈ X≤� such that

∀π′ ∈ X≤� : dDTWp(π, π̃) ≤ α · dDTWp(π, π′).

We present a dynamic programming solution for the problem of computing an
approximate simplification. Each subproblem is parameterized by the length of
a prefix of the input point sequence and the maximum length of a simplification
of that prefix. Our algorithm can be seen as a special case of the result of Brill et
al. [6,7] for computing a mean of restricted complexity, but since our statement
is different, we include a proof for completeness.

Algorithm 3. 2-Approximate Simplification
1: procedure 2-Approximate-Simplification(π = (x1, . . . , xm), �, p)
2: Initialize m × � table D with elements in R

3: Initialize m × � table C with elements in R
≤�

4: P ← {x1, . . . , xm}
5: for each i = 1, . . . , m do
6: for each j = 1, . . . , � do
7: if j = 1 then
8: x∗ ← arg minx∈P

∑i
k=1 ρ(xk, x)p

9: D(i, j) ← ∑i
k=1 ρ(xk, x∗)p

10: C(i, j) ← (x∗)
11: else
12: i′ ← arg mini′≤i

(
D(i′, j − 1) + minx∈P

∑i
k=i′ ρ(xk, x)p

)

13: x∗ ← arg minx∈P

∑i
k=i′ ρ(xk, x)p

14: D(i, j) ← D(i′, j − 1) +
∑i

k=i′ ρ(xk, x∗)p

15: C(i, j) ← C(i′, j − 1) ⊕ (x∗)

16: j∗ ← arg minj∈[�] D(m, j)
17: return C(m, j∗)

238 M. Buchin et al.

Lemma 3. Let X = (X, ρ) be a metric space. Given as input a point
sequence π = (x1, . . . , xm) ∈ Xm, Algorithm 3 returns a point sequence from
{x1, . . . , xm}≤�, which minimizes the dDTWp distance to π, among all point
sequences in {x1, . . . , xm}≤�.

Proof. We show that C(m, j∗) satisfies

dDTWp (π,C(m, j∗)) = min
π′∈P ≤�

dDTWp(π, π′).

We claim that there is a point sequence π̃ ∈ P≤� such that

dDTWp(π, π̃) = min
π′∈P ≤�

dDTWp(π, π′),

and such that the optimal warping between π and π̃ does not match two vertices
of π̃ with the same vertex of π. To see this, consider an optimal warping W
between π and some point sequence π′ = (p′

1, . . . , p
′
j) ∈ P≤�. Let (t1, t2) ∈ W

and (t1, t2+1) ∈ W . If (t1−1, t2) ∈ W then removing (t1, t2) yields a new warping
with a cost at most equal to the cost of W . Similarly, if (t1 + 1, t2 + 1) ∈ W
then removing (t1, t2 + 1) from W yields a new warping with a cost at most
equal to the cost of W . If (t1 − 1, t2) /∈ W , then we can remove p′

t2 from π′. If
(t1 + 1, t2 + 1) /∈ W , then we can remove p′

t2+1 from π′. We conclude that there
exists a point sequence π′′ ∈ P≤� such that dDTWp(π, π′′) ≤ dDTWp(π, π′), and
an optimal warping W between π and π′′ for which there are no t1 ∈ [m], t2 ∈ [�]
such that both (t1, t2) ∈ W and (t1, t2 + 1) ∈ W .

For each i ∈ [m], let π|i = (x1, . . . , xi). By construction, each D(i, j) stores
the minimum distance between π|i and any point sequence x from P j , where the
distance is attained by a warping that does not match two vertices of x to the
same vertex of π. Hence, D(m, j∗) stores the minimum distance between π and
any point sequence in P≤�, and C(m, j∗) stores a point sequence from P≤� with
distance D(m, j∗) from π.

Lemma 4. Let X = (X, ρ) be a metric space. Given as input a point sequence
π ∈ Xm, Algorithm 3 returns a (2, �)-simplification under the dDTWp distance.

Proof. Let P = {x1, . . . , xm}. By Lemma 3, C(m, j∗) is a point sequence in P≤�

that minimizes the distance to π, among all point sequences in P≤�. We show that
C(m, j∗) is a (2, �)-simplification. Let π∗ = (x∗

1, . . . , x
∗
�′) be a (1, �)-simplification

of π, and let π̃∗ = (x̃∗
1, . . . , x̃

∗
�′), where for each i ∈ [�′], x̃∗

i := arg minx∈P ρ(x, x∗
i).

Let W ∗ ∈ Wm,�′ be an optimal warping of π and π∗. Then,

dDTW
1
p(π,C(m, j∗)) ≤ dDTW

1
p(π, π̃∗)

= min
W∈Wm�′

⎛

⎝
∑

(i,j)∈W

ρ(xi, x̃
∗
j)

p

⎞

⎠

1/p

≤
⎛

⎝
∑

(i,j)∈W ∗
ρ(xi, x̃

∗
j)

p

⎞

⎠

1/p

Approximating Length-Restricted Means Under Dynamic Time Warping 239

≤
⎛

⎝
∑

(i,j)∈W ∗

(
ρ(xi, x

∗
j) + ρ(x∗

j , x̃
∗
j)

)p

⎞

⎠

1/p

(1)

≤
⎛

⎝
∑

(i,j)∈W ∗
2p

(
ρ(xi, x

∗
j)

)p

⎞

⎠

1/p

= 2 · dDTWp(π, π∗),

where in Step (1) we applied the triangle inequality.

Theorem 6. There is an algorithm that given as input π ∈ Xm, computes a
(2, �)-simplification of π under the dDTWp, in time O(m4�).

Proof. Correctness of Algorithm 3 follows from Lemma 4. It remains to bound
the running time of the algorithm. To do so, we consider the operations taking
place in the body of the nested loop. For each i, j, we iterate over O(m) values
for i′ and for each value of i′ we compute minx∈P

∑i
k=i′ ρ(xk, x)p in time O((i−

i′) · m) = O(m2). Hence, the total running time is O(m4�).

Weak Triangle Inequality. While DTW is not a metric and it is known that
the triangle inequality fails for certain instances, there is a weak version of the
triangle inequality that is satisfied. In particular, Lemire [19] shows that given
x, y, z ∈ Xm, and p ∈ [1,∞), we have

dDTWp(x, z) ≤ m1/p · (
dDTWp(x, y) + dDTWp(y, z)

)
.

We slightly generalize the above inequality in a way that implies a better
bound for the distance between two short point sequences using the distances to
a potentially longer point sequence.

Lemma 5. For any m1,m2 ∈ N, let x, z ∈ X≤m1 , y ∈ Xm2 , and p ∈ [1,∞).
Then,

dDTWp(x, z) ≤ m
1/p
1 · (

dDTWp(x, y) + dDTWp(y, z)
)
.

Proof. Let Wxz ∈ W|x|,|z| be the optimal warping between x and z. Let Wxy ∈
W|x|,|y| be the optimal warping between x and y and Wyz ∈ W|y|,|z| be the
optimal warping between y and z. Let Sxz = {(i, k, j) ∈ [|x|]×[|y|]×[|z|] | (i, k) ∈
Wxy and (k, j) ∈ Wyz} and W ′

xz = {(i, j) ∈ [|x|] × [|z|] | ∃k (i, k, j) ∈ Sxz} .
Then,

dDTWp(x, z) =

⎛

⎝
∑

(i,j)∈Wxz

ρ(xi, zj)p

⎞

⎠

1/p

≤
⎛

⎝
∑

(i,j)∈W ′
xz

ρ(xi, zj)p

⎞

⎠

1/p

240 M. Buchin et al.

≤
⎛

⎝
∑

(i,k,j)∈Sxz

(ρ(xi, yk) + ρ(yk, zj))
p

⎞

⎠

1/p

≤
⎛

⎝
∑

(i,k,j)∈Sxz

ρ(xi, yk)p

⎞

⎠

1/p

+

⎛

⎝
∑

(i,k,j)∈Sxz

ρ(yk, zj)p

⎞

⎠

1/p

≤ m
1/p
1 · dDTWp(x, y) + m

1/p
1 · dDTWp(y, z),

where the second inequality holds by the triangle inequality and the third
inequality holds by Minkowski’s inequality.

The following theorem uses the weak triangle inequality and provides an
upper bound on the expected cost of the restricted (p, 1)-mean obtained by first
sampling an input point sequence uniformly at random and then computing an
(α, �)-simplification of this point sequence. This theorem will be useful in the
next section, where we design an approximation scheme for the mean problem
that relies on a first rough estimation of the cost.

Theorem 7. Let T = {τ1, . . . , τn} ⊆ X≤m be a set of point sequences and let
p ∈ [1,∞). Let π be a point sequence picked uniformly at random from T , and
let π̃ be an (α, �)-simplification of π under dDTWp, where � ≤ m. Then,

Eπ

[
cost1p(T, π̃)

] ≤ (2 + α)m1/p�1/p · OPT�,

where OPT� denotes the cost of the optimal restricted (p, 1)-mean of T .

Proof. Let c be an optimal (p, 1)-mean of T with cost OPT�. Then,

Eπ[cost(T, π̃)] = Eπ

[
n∑

i=1

dDTWp(τi, π̃)

]

≤ Eπ

[

m
1
p

n∑

i=1

(
dDTWp(τi, c) + dDTWp(c, π̃)

)
]

(2)

= m1/p · (OPT� + n · Eπ[dDTWp(c, π̃)])

≤ m1/p · (OPT� + n · �1/p · Eπ[dDTWp(c, π) + dDTWp(π, π̃)]) (3)

≤ m1/p · (OPT� + (1 + α) · n · �1/p · Eπ[dDTWp(c, π)])

= m1/p ·
(

OPT� + (1 + α) · n · �1/p ·
∑

π∈T

dDTWp(c, π) · 1
n

)

= m1/p · (OPT� + (1 + α) · �1/p · OPT�)

≤ (2 + α)m1/p�1/p · OPT�,

where in Step (2) and Step (3), we applied Lemma 5.

Approximating Length-Restricted Means Under Dynamic Time Warping 241

2.4 Approximation Scheme for Point Sequences in Euclidean Spaces

Now we study the restricted (p, 1)-mean problem (which is to compute one
median point sequence of complexity at most �, under the p-DTW distance) for
point sequences in the Euclidean space. Formally, input point sequences belong
to

(
R

d
)≤m and we compute a median point sequence in

(
R

d
)≤�. The distance

between any two points x, y ∈ R
d is measured by the Euclidean distance ‖x−y‖,

thus for any x ∈ R
d and r > 0 we here denote B(x, r) = {y ∈ R

d | ‖x − y‖ ≤ r}.
We also use Euclidean grids:

Definition 9 (grid). Given r ∈ R+, for x = (x1, . . . , xd) ∈ R
d we define by

G(r, x) = (�x1/r�·r, . . . , �xd/r�·r) the r-grid-point of x. Let P ⊆ R
d be a subset of

R
d. The grid of cell width r that covers P is the set G(P, r) = {G(r, x) | x ∈ P}.

A grid partitions R
d into cubic regions. For any r ∈ R+, x ∈ P , we have

‖x − G(r, x)‖ ≤ r
√

d.

Algorithm. We build upon ideas developed in Sect. 2.3 and we design a (1+ε)-
approximation algorithm for the restricted (p, 1)-mean problem. The algorithm
is randomized and succeeds with probability 1 − δ, where δ is a user-defined
parameter.

Algorithm 4. Restricted (p, 1)-mean (1 + ε)-Approximation
1: procedure Med-Appr(T = {τ1 = (τ1,1, . . . , τ1,|τ1|), . . . , τn =

(τn,1, . . . , τn,|τn|)}, ε, p, δ)
2: S ← sample �log(2/δ)� point sequences from T uniformly and independently

at random with replacement
3: R ← ∅, C ← ∅
4: for each τi ∈ S do
5: τ ′

i ← (2, �)-simplification of τi under dDTWp

6: R ← R ∪ {cost1p(T, τ ′
i)}

7: R ← min R, β ← 2 ·
(

68m1/p

ε
+ 5

)d

, IR ←
{

R·2−i

n
| i = 0, . . . , �3 + log(m�)/p�

}

8: for each r ∈ IR do
9: γ ← ε·r

(2m)1/p
√

d

10: for each τi ∈ S do
11: B(τi, 4r) ← ⋃|τi|

j=1 B(τi,j , 4r), N ← G(B(τi, 4r), γ)
12: if |N | ≤ � · β then
13: C ← C ∪ N≤�

14: return an arbitrary element of arg min
c∈C

cost1p(T, c).

The high-level idea is the following. Given a set T of n point sequences, we
first compute a rough estimate of the optimal cost. To do so, we sub-sample a
sufficiently large number of input sequences that we store in a set S, and we com-
pute a (2, �)-simplification for each one of them. We detect a sequence in S whose

242 M. Buchin et al.

simplification minimizes the restricted (p, 1)-mean cost; this cost is denoted by
R. The results of Sect. 2.3 imply that with good probability, R is a O((m�)1/p)
approximation of the optimal cost. We can now use R to “guess” a refined esti-
mate for the restricted (p, 1)-mean cost which is within a constant factor from
the optimal, by enumerating multiples of 2 in the interval [Ω(R(m�)−1/p), R].
Assuming that we have such an estimate, we can use it to fine-tune a grid,
which is then intersected with balls centered at the points of sequences in S.
We use the resulting grid points to compute a set of candidate solutions. The
idea here is that with good probability one of the point sequences in S is very
close to the optimal solution, so one of the candidate solutions will be a good
approximation.

Analysis. Now we analyze the running time and correctness of Algorithm 4.
We begin with a bound on the probability that R is a rough approximation of
the optimal median cost.

Lemma 6. Let c be an optimal restricted (p, 1)-mean of T . With probability at
least 1 − δ/2,

R ≤ 8m1/p�1/p · cost1p(T, c).

Proof. For any point sequence τi ∈ T , let τ ′
i be a (2, �)-simplification. Let τj be

a randomly sampled point sequence from T . By Theorem 7,

E
[
cost1p(T, τ ′

j)
] ≤ 4m1/p�1/p · cost1p(T, c).

By Markov’s inequality, Pr
[
cost1p(T, τ ′

j) ≥ 8m1/p�1/p · cost1p(T, c)
] ≤ 1

2 .
Hence, the probability that R ≥ 8m1/p�1/p · cost1p(T, c) is equal to

Pr
[
∀τi ∈ S : cost1p(T, τ ′

i) ≥ 8m1/p�1/p · cost1p(T, c)
]

≤ 1
2|S| ≤ δ

2
.

Next, we bound the probability that a point sequence in the sample S is
conveniently close to the optimal median.

Lemma 7. Let c be an optimal restricted (p, 1)-mean of T . With probability at
least 1 − δ/2, there exists a τi ∈ S such that dDTWp(τi, c) < (2/n) · cost1p(T, c).

Proof. Let τi be a randomly sampled point sequence from T :

Eτi

[
dDTWp(τi, c)

]
=

n∑

i=1

dDTWp(τi, c) · 1
n

=
cost1p(T, c)

n
.

By Markov’s inequality, Pr
[
dDTWp(τi, c) > 2 · cost1p(T,c)

n

]
≤ 1

2 . Hence,

Pr

[

∀τi ∈ S : dDTWp(τi, c) > 2 · cost1p(T, c)
n

]

≤ 1
2|S| ≤ δ

2
.

Approximating Length-Restricted Means Under Dynamic Time Warping 243

The set IR contains a value r such that nr is within a factor of 2 from the
optimal cost.

Lemma 8. Let c be an optimal restricted (p, 1)-mean of T . If

R ≤ 8m1/p�1/p cost1p(T, c),

then there exists r ∈ IR such that cost1p(T, c) ∈ [nr, 2nr].

Proof. Since R is the cost of a curve of complexity at most �, we have that
cost1p(T, c) ≤ R. By assumption, cost1p(T, c) ≥ R/(8m1/p�1/p). By the definition
of IR, there exists j ≥ 0 such that

2−(j+1) · R

n
≤ cost1p(T, c)

n
≤ 2−j · R

n
.

Hence, the lemma is true for r = 2−(j+1) · R
n .

The following is an upper bound on the number of grid cells needed to cover
a Euclidean ball. Similar bounds appear often in the literature, but they are
typically asymptotic and not sufficient for our needs. Therefore, we prove an
exact (non-asymptotic) upper bound.

Lemma 9. Let x ∈ R
d, r > 0, γ > 0.

|G (B(x, 8r), γ)| ≤ 2 ·
(

34r

γ
√

d
+ 5

)d

.

Proof. We use Binet’s second expression [36] for the Gamma function ln Γ (z):

ln Γ (z) = z ln(z) − z +
1
2

ln
(

2π

z

)

+
∫ ∞

0

2 arctan
(

t
z

)

e2πt − 1
dt.

Since arctan(x) ≥ 0 for x ≥ 0 and e2πx − 1 ≥ 0 for x ≥ 0, we have the
following inequality:

ln Γ (z) ≥ z ln(z) − z +
1
2

ln
(

2π

z

)

⇐⇒ ln Γ (z) ≥ ln(zz) − ln(ez) + ln

(√
2π

z

)

⇐⇒ Γ (z) ≥ zze−z

√
2π

z

⇐⇒ Γ (z) ≥
√

2πzz− 1
2 e−z. (4)

244 M. Buchin et al.

We apply a standard volumetric argument to upper bound |G (B(x, 8r), γ)|.

|G (B(x, 8r), γ)| ≤ vol(B(x, 8r + γ
√

d))
γd

=
πd/2

Γ (d
2 + 1)

· (8r + γ
√

d)d

γd

≤ πd/2ed/2+1

√
2π

(
d
2 + 1

)d/2+1/2
· (8r + γ

√
d)d

γd
(5)

≤ 2d/2+1/2πd/2ed/2+1

√
2π · dd/2+1/2

· (8r + γ
√

d)d

γd

≤ e · (4.2)d

√
π · dd/2

· (8r + γ
√

d)d

γd

≤ 2 ·
(

34r

γ
√

d
+ 5

)d

,

where in (5) we used (4).

We now focus on the iteration of the algorithm with r ∈ IR, τi ∈ S, such
that r satisfies the property guaranteed by Lemma 8 and τi satisfies the property
guaranteed by Lemma 7. We claim that in that iteration, an (1+ε)-approximate
median is inserted to C.

Lemma 10. Let c be an optimal restricted (p, 1)-mean of T . Let r∗ be such
that cost1p(T, c) ∈ [nr∗, 2nr∗] and let γ∗ = εr∗

(2m)1/p
√

d
. If τi ∈ S is such that

dDTWp(τi, c) ≤ (2/n) · cost1p(T, c) then

i) |G(B(τi, 4r∗), γ∗)| ≤ � · 2 ·
(

34r∗

γ∗√
d

+ 5
)d

and

ii) there exists c′ ∈ G(B(τi, 4r∗), γ∗)≤� such that cost1p(T, c′) ≤ (1+ε)·cost1p(T, c).

Proof. Let c = (c1, . . . , c�′), where �′ ≤ �. To prove i), notice that dDTWp(τi, c) ≤
4r∗, which implies that for any vertex τi,j of τi, there exists a vertex cz of c such
that τi,j ∈ B(cz, 4r∗). By the triangle inequality B(τi,j , 4r∗) ⊆ B(cz, 8r∗). Hence,

B(τi, 4r∗) ⊆
�⋃

z=1

B(cz, 8r∗) =⇒ |G(B(τi, 4r∗), γ∗)| ≤
∣
∣
∣
∣
∣
∣
G

⎛

⎝
�′
⋃

z=1

B(cz, 8r∗), γ∗

⎞

⎠

∣
∣
∣
∣
∣
∣

≤
�∑

z=1

|G (B(cz, 8r∗), γ∗)| .

By Lemma 9, we obtain

|G(B(τi, 4r∗), γ∗)| ≤ � · 2 ·
(

34r∗

γ∗√d
+ 5

)d

.

Approximating Length-Restricted Means Under Dynamic Time Warping 245

To prove ii), notice that all vertices of c are contained in B(τi, 4r∗). Hence,
for each point cz there exists a grid point c̃z ∈ G(B(τi, r

∗), γ∗) such that ‖cz −
c̃z‖ ≤ γ∗√d. We will show that the point sequence c̃ = (c̃1, . . . , c̃�′) is a (1 + ε)-
approximation. For each i ∈ [n], W ∗

i denotes the optimal warping of τi with c.

cost1p(T, c̃) =
n∑

i=1

dDTWp(τi, c̃)

=
n∑

i=1

min
W∈W|τi|,�

⎛

⎝
∑

(k,j)∈W

‖τi,k − c̃j‖p

⎞

⎠

1/p

≤
n∑

i=1

⎛

⎝
∑

(k,j)∈W ∗
i

‖τi,k − c̃j‖p

⎞

⎠

1/p

≤
n∑

i=1

⎛

⎝
∑

(k,j)∈W ∗
i

(‖τi,k − cj‖ + ‖cj − c̃j‖)p

⎞

⎠

1/p

≤
n∑

i=1

⎛

⎜
⎝

⎛

⎝
∑

(k,j)∈W ∗
i

‖τi,k − cj‖p

⎞

⎠

1/p

+

⎛

⎝
∑

(k,j)∈W ∗
i

‖cj − c̃j‖p

⎞

⎠

1/p
⎞

⎟
⎠

≤
n∑

i=1

(
dDTWp(τi, c) + |W ∗

i |1/p · γ∗√d
)

≤
n∑

i=1

(

dDTWp(τi, c) +
cost1p(T, c) · ε

n

)

= (1 + ε) · cost1p(T, c),

where the second inequality follows from the triangle inequality, and the third
inequality follows from Minkowski’s inequality. We also make use of the fact that
|W ∗

i | ≤ 2m.

The correctness of our algorithm follows by combining the above.

Lemma 11. Given a set T ⊂ (
R

d
)≤m, ε > 0, p ∈ [1,∞), δ ∈ (0, 1), Algorithm

4 returns a (1 + ε)-approximate restricted (p, 1)-mean with probability of success
1 − δ.

Proof. Let c be an optimal restricted (p, 1)-mean of T . Applying a union bound
over the events of Lemma 6 and Lemma 7, we conclude that with probability at
least 1 − δ, we have R ≤ 8m1/p�1/p · cost1p(T, c), and there exists a τi ∈ S such
that dDTWp(τi, c) < (2/n) · cost1p(T, c). We show correctness assuming that the
above two events hold. By Lemma 8 we know that there exists an r∗ ∈ IR such
that cost1p(T, c) ∈ [nr∗, 2nr∗].

We focus on the iteration where r∗ is considered. Let γ∗ be the value of γ
in that iteration and let N∗ be the set N in that iteration. By Lemma 10 i),

246 M. Buchin et al.

|N∗| ≤ �β and all point sequences of complexity at most � defined by points in
N∗ will be considered as possible solutions. By Lemma 10 ii), there is a point
sequence in (N∗)≤� which is a (1 + ε)-approximate solution.

Finally, we bound the running time of Algorithm 4.

Theorem 8. Given a set T ⊂ (
R

d
)≤m of n point sequences (defined over the

Euclidean space), ε ∈ (0,m1/p], p ∈ [1,∞), δ ∈ (0, 1), Algorithm 4 returns a
(1 + ε)-approximate restricted (p, 1)-mean with probability of success 1 − δ and

has running time in O

((

m4 + nm ·
(

m1/p

ε

)d�

· log(m)
p

)

· log
(
1
δ

)
)

.

Proof. Correctness follows from Lemma 11. It remains to bound the running
time. For each one of the point sequences in S, we compute its (2, �)-simplification
in O(dm4�) time using Theorem 6 and its median cost in O(dnm�) time. Hence,
the total time needed to compute R and then R is O((m4 + nm) · d� log(1/δ)).
The set IR has cardinality |IR| = O (log(m�)/p). For each value r ∈ IR, we add

at most
∑�

i=1 |N |i · |S| ≤ �
(
� · 2 · (

68m1/pε−1 + 5
)d

)�

· |S| candidates. For each
candidate point sequence in C, we compute the cost in time O(dnm�). Since d
and � are considered constants, the total running time is

O

((

m4 + nm ·
(
m1/pε−1

)d�

· log(m)/p

)

· log (1/δ)
)

.

3 Application to Clustering

We can apply the results of Sects. 2.2 and 2.3 to the problem of clustering of
point sequences, which we define as follows.

Definition 10 ((k, �, p, q)-clustering). The (k, �, p, q)-clustering problem is
defined as follows, where k ∈ N, � ∈ N>1 and p, q ∈ [1,∞) are fixed (con-
stant) parameters of the problem: given a set T = {τ1, . . . , τn} ⊆ X≤m of
point sequences, compute a set C ⊆ X≤� of k point sequences, such that
costq

p(T,C) =
∑n

i=1 minc∈C dDTWp(c, τi)q is minimal.

Solving an instance of the (k, �, p, q)-clustering problem is equivalent to solv-
ing an instance of the k-median problem, where the distance between any center
c and any other element x is measured by dDTWp(x, c)q. To solve the k-medians
problem, one can apply a general framework represented by the following two
theorems, which are proven in [11], and appear slightly rephrased here. The two
theorems provide sufficient conditions for a solution to the k-medians problem.
We specialize the statements to our case of interest, the dDTWp distances, raised
to the power of q.

Theorem 9 (Theorem 7.2 [11]). Let T = {τ1, . . . , τn} ⊂ X≤m, α ∈ [1,∞),
β ∈ [1,∞), δ ∈ (0, 1), and let T ′ ⊆ T be an arbitrary subset such that |T ′| ≥
|T | · β−1. Suppose that there is an algorithm Candidates that given as input

Approximating Length-Restricted Means Under Dynamic Time Warping 247

T, α, β, δ outputs C ⊂ X≤� such that with probability at least 1− δ, C contains a
point sequence c such that costq

p(T
′, c) ≤ α · costq

p(T
′, c∗), where c∗ is a restricted

p-mean of T ′.
Then, there is an algorithm k-clustering that given as input (T, ∅, k, β, δ),

where β ∈ (2k,∞), δ ∈ (0, 1), p, q ∈ [1,∞), returns with probability at least 1− δ

a set C = {c1, . . . , ck} ⊂ X≤� with costq
p(T,C) ≤

(
1 + 4k

β−2k

)
· α · costq

p(T,C∗),
where C∗ is an optimal solution to the (k, �, p, q)-clustering problem with input T .

Theorem 10 (Theorem 7.3 [11]). Let T1(n, α, β, δ) denote the worst-case run-
ning time of Candidates for an arbitrary input-set T ⊂ X≤m with |T | = n and
let C(n, α, β, δ) denote the maximum number of candidates it returns. If T1 and
C are non-decreasing in n, then k-clustering has running time in

O
(
C(n, α, β, δ)k+2 · nm · Tρ + C(n, α, β, δ)k+1 · T1(n, α, β, δ)

)
,

where Tρ denotes the worst-case running time needed to compute the distance
between two points in X.

The algorithm k-clustering is a general recursive scheme that collects k
medians by repeatedly calling the algorithm Candidates. We now adapt our
algorithms from Sects. 2.2 and 2.3 such that they can serve as Candidates. Algo-
rithm 1 can be easily modified to return the set of candidates, instead of returning
the best among them. We show that setting parameters appropriately yields an
algorithm that satisfies the properties required by the above-mentioned frame-
work and leads to a randomized algorithm for the (k, �, p, p)-clustering problem
with approximation factor in O(2p), probability of success 1−δ and running time
in O

(
(2pkm ln (�/δ))�(k+2) · nm

)
, assuming that the time needed to compute the

distance between two points is constant. Similarly, the random sampling method
implied by Theorem 7 can be used to produce a sufficiently large sample of candi-
dates, which leads to a randomized algorithm for the (k, �, p, 1)-clustering prob-
lem with approximation factor in O(m1/p�1/p), probability of success 1 − δ and
running time in O

(
(k log(1/δ))k+2 · nm + m4(k log(1/δ))k+2

)
, assuming again

constant time for distance computations of points.

3.1 (k, �, p, p)-Clustering

In this section, we apply the result of Sect. 2.2 to design a randomized algorithm
for the (k, �, p, p)-clustering problem. The following algorithm is an adaptation
of Algorithm 1.

Algorithm 5. (1, �, p, p)-clustering approximate candidates
1: procedure Cand1(T = {(τ1,1, . . . , τ1,|τ1|), . . . , (τn,1, . . . , τn,|τn|)}, β, δ, ε, p)

2: P ← ⋃n
i=1

⋃|τi|
j=1{τi,j}

3: S ← sample
⌈
(2pε−1 + 1)βm ln (�/δ)

⌉
points from P

uniformly and independently at random with replacement
4: return S≤�

248 M. Buchin et al.

Lemma 12. Let T ⊂ X≤m, β > 1, δ ∈ (0, 1), ε > 0, p ≥ 1. Let T ′ ⊆ T such
that |T ′| ≥ |T |·β−1 and let C be a set obtained by running Algorithm 5 with input
(T, β, p, δ). Let c ∈ X�′

, �′ ≤ �, be an optimal p-mean of T ′. With probability at
least 1 − δ, there exists τ ′ ∈ C such that

costp
p(T

′, τ ′) ≤ (2p + ε) · costp
p(T

′, c).

Proof. By Lemma 1 applied on T ′, we have that there exist sets B1, . . . , B�′ ⊆ P ,
each of cardinality at least

(
ε

2p+ε

)
· |T ′| such that any point sequence c′ =

(c′
1, . . . , c

′
�′) with ∀i ∈ [�] : c′

i ∈ Bi, is a (2p + ε)-approximate restricted p-mean
of T ′. We upper bound the probability that S does not contain any point from
a fixed Bi:

Pr [∀x ∈ Bi : x /∈ S] ≤
⎛

⎝
|P | −

(
ε

2p+ε

)
· |T ′|

|P |

⎞

⎠

|S|

≤
(

1 −
(

ε

(2p + ε)βm

))|S|

≤ δ

�
.

Then, by a union bound we have that the probability that there exists i ∈ [�′]
such that ∀x ∈ Bi : x /∈ S, is at most δ. Hence, with probability at least 1 − δ,
there is a point sequence c′ ∈ S≤� which is a (2p + ε)-approximate restricted
p-mean of T ′.

Theorem 11. There is an algorithm that given a set T ⊂ X≤m of n point
sequences, p ∈ [1,∞), β ∈ (2k,∞) and δ ∈ (0, 1), returns with probability at least
1−δ a set C = {c1, . . . , ck} with costp

p(T,C) ≤
(
1 + 4k

β−2k

)
·(2p+ε)·costp

p(T,C∗),
where C∗ is an optimal set of k-medians of T , under dDTWp. The algorithm has
running time in

O
(
((2pε−1 + 1)βm ln (�/δ))�(k+2) · nm

)
,

assuming that the time needed to compute the distance between two points of X
is constant.

Proof. We plug Algorithm 5 into Theorems 9 and 10. By Lemma 12, for any
T ′ ⊆ T with |T ′| ≥ |T |β−1 Algorithm 5 returns a set of point sequences which
contains a (2p + ε)-approximate restricted p-mean of T ′. Therefore, by Theorem
9 the clustering algorithm is correct. The running time of Algorithm 5 is upper
bounded by O(|S|� + nm). The running time then follows by Theorem 10.

3.2 k-medians Under p-DTW

In this section, we apply the random sampling bound developed in Sect. 2.3 to
design a randomized algorithm for the (k, �, p, 1)-clustering problem, that is the

Approximating Length-Restricted Means Under Dynamic Time Warping 249

problem of computing k-medians of complexity at most �, under dDTWp. We
achieve an approximation factor in O(m1/p�1/p).

The main idea is that one can use random sampling and approximate simplifi-
cations, to obtain a simple algorithm for computing a set of 1-median candidates.
Those candidates are guaranteed, up to some user-defined probability, to con-
tain a point sequence which is an approximate 1-median for a fixed but unknown
subset of the input.

Algorithm 6. (1, �, p, 1)-clustering approximate candidates
1: procedure Cand2(T = {τ1, . . . , τn}, β, p, δ)
2: S ← sample �2β · log(2/δ)� point sequences from T

uniformly and independently at random with replacement
3: C ← ∅
4: for each τ ∈ S do
5: τ ′ ← (2, �)-simplification of τ , under dDTWp

6: C ← C ∪ {τ ′}
7: return C

Lemma 13. Let T ⊂ X≤m, β > 1, p ≥ 1, δ ∈ (0, 1). Let T ′ ⊆ T such that
|T ′| ≥ |T | · β−1 and let C be a set obtained by running Algorithm 6 with input
(T, β, p, δ). Let c be an optimal restricted (p, 1)-mean of T ′. With probability at
least 1 − δ, there exists τ ′ ∈ C such that

cost1p(T
′, τ ′) ≤ 8 · m1/p�1/p · cost1p(T

′, c).

Proof. We use a standard Chernoff bound (see [23, Theorem 4.5]) to upper bound
the probability that |S ∩ T ′| ≤ |S|/(2β). Notice that E [|S ∩ T ′|] ≥ |S| · β−1.
Hence,

Pr
[

|S ∩ T ′| ≤ |S|
2β

]

≤ exp
(

−|S|
8β

)

≤ δ

2
. (6)

Let ET ′ be the event that |S ∩ T ′| > |S|
2β . We condition the rest of the proof on

the event ET ′ . Let τ ′ be a (2, �)-simplification of any point sequence τ ∈ S ∩ T ′.
Then, by Theorem 7,

Eτ

[
cost1p(T

′, τ ′) | ET ′
] ≤ 4m1/p�1/p · cost1p(T

′, c).

By Markov’s inequality, Pr
[
cost1p(T

′, τ ′) ≥ 8m1/p�1/p · cost1p(T
′, c) | ET ′

] ≤
1
2 . Hence, by independence of the random sampling,

Pr
[
∀τ ∈ S ∩ T ′ : cost1p(T

′, τ ′) ≥ 8m1/p�1/p · cost1p(T
′, c) | ET ′

]
≤ 1

2|S|/(2β)

≤ δ

2
. (7)

A union bound using inequalities (6), (7) completes the proof.

250 M. Buchin et al.

Theorem 12. There is an algorithm that given a set T ⊂ X≤m of n point
sequences, p ∈ [1,∞), β ∈ (2k,∞) and δ ∈ (0, 1), returns with probability at
least 1 − δ a set C = {c1, . . . , ck} with cost1p(T,C) ≤

(
1 + 4k

β−2k

)
· (8m1/p�1/p) ·

cost1p(T,C∗), where C∗ is an optimal set of k-medians of T , under dDTWp. The
algorithm has running time in

O
(
(β log(1/δ))k+2 · nm + (β log(1/δ))k+1 · βm4 log(1/δ)

)
,

assuming that the distance between two points of X can be computed in constant
time.

Proof. We plug Algorithm 6 into Theorems 9 and 10. Lemma 13 guarantees
that with probability at least 1 − δ, there exists a point sequence in the set C,
returned by Algorithm 6, which is an (8m1/p�1/p)-approximate 1-median to an
arbitrary subset T ′ ⊂ T , as required by Theorem 9. Let Tρ be time needed to
compute the distance between two elements of X. Using Theorem 6 to compute
simplifications, Algorithm 6 needs O(Tρ · βm4� log(1/δ))) time to compute C.
Taking into account the time needed to read the input, and assuming that d, � are
constants, the total running time of Algorithm 6 is in O(nm+Tρ ·βm4 log(1/δ)).

Therefore, by Theorem 9, there is an algorithm that returns an
(
1 + 4k

β−2k

)
·

(8m1/p�1/p)-approximate solution to the k-medians problem, and by Theorem
10 the algorithm has running time in

O
(
β log(1/δ))k+2 · nm · Tρ + (β log(1/δ))k+1 · (nm + Tρ · βm4 log(1/δ))

)
.

4 Conclusions

We have studied mean problems for point sequences under the p-DTW distance
and devised exact and approximation algorithms for several relevant problem
variants where the complexity of the mean is restricted by a parameter �. Our
exact algorithm runs in polynomial time for constant � and d. The running times
of our approximation algorithms depend only linearly on the number of input
sequences. The dependency on the length of the input sequences, however, is
high; the dependency on the parameter � is even exponential. We hope that the
algorithmic techniques developed in this paper will inspire further work on the
topic. In particular, we think the weak triangle inequality and the simplification
algorithm could be of great use. In contrast, a proof of hardness of approximation
for the central problem studied in this paper is not in sight. We leave this as an
open problem.

Approximating Length-Restricted Means Under Dynamic Time Warping 251

References

1. Aach, J., Church, G.M.: Aligning gene expression time series with time warping
algorithms. Bioinformatics 17(6), 495–508 (2001)

2. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and
other sequence similarity measures. In: Guruswami, V. (ed.) IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17–20 October 2015, pp. 59–78. IEEE Computer Society (2015)

3. Abdulla, W.H., Chow, D., Sin, G.: Cross-words reference template for DTW-based
speech recognition systems. In: TENCON 2003. Conference on Convergent Tech-
nologies for Asia-Pacific Region, vol. 4, pp. 1576–1579 (2003)

4. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time
series. In: Fayyad, U.M., Uthurusamy, R. (eds.) Knowledge Discovery in Databases:
Papers from the 1994 AAAI Workshop, Seattle, Washington, USA, July 1994.
Technical report WS-94-03, pp. 359–370. AAAI Press (1994)

5. Brankovic, M., Buchin, K., Klaren, K., Nusser, A., Popov, A., Wong, S.: (k, l)-
medians clustering of trajectories using continuous dynamic time warping. In: Lu,
C., Wang, F., Trajcevski, G., Huang, Y., Newsam, S.D., Xiong, L. (eds.) SIGSPA-
TIAL 2020: 28th International Conference on Advances in Geographic Information
Systems, Seattle, WA, USA, 3–6 November 2020, pp. 99–110. ACM (2020)

6. Brill, M., Fluschnik, T., Froese, V., Jain, B.J., Niedermeier, R., Schultz, D.: Exact
mean computation in dynamic time warping spaces. In: Proceedings of the 2018
SIAM International Conference on Data Mining, SDM 2018, 3–5 May 2018, San
Diego Marriott Mission Valley, San Diego, CA, USA, pp. 540–548 (2018)

7. Brill, M., Fluschnik, T., Froese, V., Jain, B., Niedermeier, R., Schultz, D.: Exact
mean computation in dynamic time warping spaces. Data Min. Knowl. Disc. 33(1),
252–291 (2018). https://doi.org/10.1007/s10618-018-0604-8

8. Bringmann, K., Künnemann, M.: Quadratic conditional lower bounds for string
problems and dynamic time warping. In: Guruswami, V. (ed.) IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17–20 October 2015, pp. 79–97. IEEE Computer Society (2015)

9. Brönnimann, H., Chazelle, B., Matousek, J.: Product range spaces, sensitive sam-
pling, and derandomization. SIAM J. Comput. 28(5), 1552–1575 (1999)

10. Buchin, K., Driemel, A., Struijs, M.: On the hardness of computing an average
curve. In: 17th Scandinavian Symposium and Workshops on Algorithm Theory,
SWAT 2020, 22–24 June 2020, Tórshavn, Faroe Islands, pp. 19:1–19:19 (2020)

11. Buchin, M., Driemel, A., Rohde, D.: Approximating (k, �)-median clustering for
polygonal curves. In: Marx, D. (ed.) Proceedings of the 2021 ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2021, Virtual Conference, 10–13 January
2021, pp. 2697–2717. SIAM (2021)

12. Bulteau, L., Froese, V., Niedermeier, R.: Tight hardness results for consensus prob-
lems on circular strings and time series. SIAM J. Discret. Math. 34(3), 1854–1883
(2020)

13. Caiani, E.G., et al.: Warped-average template technique to track on a cycle-by-
cycle basis the cardiac filling phases on left ventricular volume. In: Computers in
Cardiology 1998, vol. 25 (Cat. No.98CH36292), pp. 73–76 (1998)

14. Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M.: A singly exponential strat-
ification scheme for real semi-algebraic varieties and its applications. Theoret. Com-
put. Sci. 84(1), 77–105 (1991)

https://doi.org/10.1007/s10618-018-0604-8

252 M. Buchin et al.

15. Datta, S., Karmakar, C.K., Palaniswami, M.: Averaging methods using dynamic
time warping for time series classification. In: 2020 IEEE Symposium Series on
Computational Intelligence (SSCI), pp. 2794–2798 (2020)

16. Edelsbrunner, H., O’Rourke, J., Seidel, R.: Constructing arrangements of lines and
hyperplanes with applications. SIAM J. Comput. 15(2), 341–363 (1986)

17. Har-peled, S.: Geometric Approximation Algorithms. American Mathematical
Society, USA (2011)

18. Hautamäki, V., Nykanen, P., Franti, P.: Time-series clustering by approximate
prototypes. In: 2008 19th International Conference on Pattern Recognition, pp.
1–4 (2008)

19. Lemire, D.: Faster retrieval with a two-pass dynamic-time-warping lower bound.
Pattern Recogn. 42(9), 2169–2180 (2009)

20. Liu, Y.T., Zhang, Y., Zeng, M.: Adaptive global time sequence averaging method
using dynamic time warping. IEEE Trans. Signal Process. 67, 2129–2142 (2019)

21. Luca, A.D., Hang, A., Brudy, F., Lindner, C., Hussmann, H.: Touch me once and i
know it’s you!: implicit authentication based on touch screen patterns. In: Konstan,
J.A., Chi, E.H., Höök, K. (eds.) CHI Conference on Human Factors in Computing
Systems, CHI 2012, Austin, TX, USA, 05–10 May 2012, pp. 987–996. ACM (2012)

22. Matousek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics,
vol. 212. Springer, New York (2002). https://doi.org/10.1007/978-1-4613-0039-7

23. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomization and
Probabilistic Techniques in Algorithms and Data Analysis, 2nd edn. Cambridge
University Press, Cambridge (2017)

24. Morel, M., Achard, C., Kulpa, R., Dubuisson, S.: Time-series averaging using con-
strained dynamic time warping with tolerance. Pattern Recogn. 74, 77–89 (2018)

25. Muda, L., Begam, M., Elamvazuthi, I.: Voice recognition algorithms using MEL
frequency cepstral coefficient (MFCC) and dynamic time warping (DTW) tech-
niques (2010)

26. Munich, M.E., Perona, P.: Continuous dynamic time warping for translation-
invariant curve alignment with applications to signature verification. In: Proceed-
ings of the International Conference on Computer Vision, Kerkyra, Corfu, Greece,
20–25 September 1999, pp. 108–115. IEEE Computer Society (1999)

27. Okawa, M.: Time-series averaging and local stability-weighted dynamic time warp-
ing for online signature verification. Pattern Recogn. 112, 107699 (2021)

28. Petitjean, F., Ketterlin, A., Gançarski, P.: A global averaging method for dynamic
time warping, with applications to clustering. Pattern Recognit. 44(3), 678–693
(2011)

29. Rabiner, L., Wilpon, J.: Considerations in applying clustering techniques to speaker
independent word recognition. In: ICASSP 1979. IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol. 4, pp. 578–581 (1979)

30. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

31. Sauer, N.: On the density of families of sets. J. Comb. Theory Ser. A 13, 145–147
(1972)

32. Schaar, N., Froese, V., Niedermeier, R.: Faster binary mean computation under
dynamic time warping. In: 31st Annual Symposium on Combinatorial Pattern
Matching, CPM 2020, 17–19 June 2020, Copenhagen, Denmark, pp. 28:1–28:13
(2020)

33. Schultz, D., Jain, B.: Nonsmooth analysis and subgradient methods for averaging
in dynamic time warping spaces. Pattern Recogn. 74, 340–358 (2018)

https://doi.org/10.1007/978-1-4613-0039-7

Approximating Length-Restricted Means Under Dynamic Time Warping 253

34. Shelah, S.: A combinatorial problem; stability and order for models and theories
in infinitary languages. Pac. J. Math. 41(1), 247–261 (1972)

35. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies
of events to their probabilities. Theory Probab. Appl 16, 264–280 (1971)

36. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge Math-
ematical Library, 4th edn. Cambridge University Press, Cambridge (1996)

37. Zhu, Y., Shasha, D.E.: Warping indexes with envelope transforms for query by
humming. In: Halevy, A.Y., Ives, Z.G., Doan, A. (eds.) Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, San Diego,
California, USA, 9–12 June 2003, pp. 181–192. ACM (2003)

Author Index

Abels, Andreas 61

Baligács, Júlia 154
Bampis, Evripidis 116
Bhore, Sujoy 211
Buchem, Moritz 36
Buchin, Maike 225

Cohen, Ilan Reuven 172

Dabas, Rajni 1
Disser, Yann 154
Driemel, Anne 225

Escoffier, Bruno 116

Garg, Naveen 1
Gupta, Neelima 1

Hellerstein, Lisa 190

Kaur, Dilpreet 1
Kleist, Linda 36
Kletenik, Devorah 190
Klute, Fabian 211

Ladewig, Leon 61
Lieskovský, Matej 20
Liu, Alison Hsiang-Hsuan 134
Liu, Naifeng 190

Mosis, Nils 154

Oostveen, Jelle J. 211

Psarros, Ioannis 225

Rohde, Dennis 225

Schewior, Kevin 61
Schmidt genannt Waldschmidt, Daniel 36
Sgall, Jiří 20
Shmoys, David 82
Smedira, Devin 82
Stinzendörfer, Moritz 61

Toole-Charignon, Jonathan 134

van Greevenbroek, Koen 225

Weckbecker, David 154
Witter, R. Teal 190

Xefteris, Michalis 116

	 Preface
	 Organization
	 A PTAS for Unsplittable Flow on a Path (Invited Talk)
	 Contents
	Locating Service and Charging Stations
	1 Introduction
	2 Preliminaries and Related Work
	3 Locating Service Stations
	3.1 Linear Program and the Integrality Gap
	3.2 The Graph is a Tree
	3.3 General Graphs

	4 Locating Charging Stations for Given Source-Destination Pairs
	4.1 The Graph is a Tree
	4.2 General Graphs

	5 Locating Charging Stations When Routes are Specified
	5.1 The Graph is a Tree
	5.2 General Graphs

	6 Conclusion
	References

	Graph Burning and Non-uniform k-centers for Small Treewidth
	1 Introduction
	2 Solving k-center Problem with Different Radii on Trees
	3 Generalization to Graphs with Small Treewidth
	3.1 Tree Decompositions
	3.2 Tidy Assignments
	3.3 The Algorithm

	4 A PTAS for Burning Graphs of Small Treewidth
	5 Conclusions
	References

	Scheduling with Machine Conflicts
	1 Introduction
	1.1 Our Contribution and Organization
	1.2 Related Work

	2 Identical Jobs
	3 Unit Jobs
	3.1 Stars
	3.2 Optimal Schedules for Bipartite Graphs for a Given Star Forest
	3.3 Computing a Star Forest with I, II, III-Colorings

	4 Future Directions
	5 Appendix I – Details for Sect.2
	5.1 Long Blocking Times
	5.2 Short Blocking Times

	6 Appendix II – Details for Sect.3
	References

	Knapsack Secretary Through Boosting
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	3 Matching 1/e for 1–2-Knapsack
	3.1 Structural Lemma
	3.2 First Approach: Without Boosting
	3.3 Optimal Algorithm Through -Boosting

	4 Ordinal Algorithms for 1-B-Knapsack
	5 Conclusion
	References

	Scheduling Appointments Online: The Power of Deferred Decision-Making
	1 Introduction
	2 Packing Algorithm
	2.1 Schedule Creation
	2.2 Rematching
	2.3 Example Category Packing

	3 Analysis
	3.1 Properties
	3.2 Configuration Bin-Packing LP
	3.3 Additive Constants Bins
	3.4 Bounded Imbalanced Bins
	3.5 Multiplicative Bound on Packed Bins
	3.6 Completing the Proof of Theorem 1

	4 Lower Bounds
	4.1 Deterministic Lower Bound
	4.2 Randomized Lower Bound

	5 Conclusions and Future Work
	A Particularly Hard Input
	B Configuration Strategies
	B.1 Alternating Sides
	B.2 Type 2 Small Bins
	B.3 Rematching with Different Large Item Categories
	B.4 Rematching with Quarter Item Sets
	B.5 Rematching with Large Items

	C Category List and Matching Process Description
	C.1 Very Large Items
	C.2 Large Items
	C.3 Medium Items
	C.4 Third Items
	C.5 Small Items

	References

	Canadian Traveller Problem with Predictions
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Deterministic and Randomized Algorithms
	2.2 Notations

	3 Tradeoffs Between Consistency and Robustness
	3.1 Tradeoffs for Deterministic Algorithms
	3.2 Randomized Bounds and Algorithms

	4 Robustness Analysis
	4.1 Deterministic Bounds
	4.2 Randomized Bounds

	References

	The Power of Amortized Recourse for Online Graph Problems
	1 Introduction
	2 Monotone-Sum Graph Problems and a General Algorithm
	3 Maximum Independent Set
	4 Maximum Cardinality Matching
	5 Minimum Vertex Cover
	6 Concluding Remarks
	References

	An Improved Algorithm for Open Online Dial-a-Ride
	1 Introduction
	2 Notation and Definition of the Algorithm
	3 Analysis of Lazy
	4 Lower Bound for Lazy
	References

	Stochastic Graph Exploration with Limited Resources
	1 Introduction
	1.1 Summary of Results and Techniques
	1.2 Related Work

	2 Preliminaries
	3 Bounding the Optimal Adaptive Policy
	4 Spider Graphs
	4.1 Non-adaptive Algorithm
	4.2 Risky Vertices
	4.3 Non-risky Vertices
	4.4 Putting Things Together

	5 Bounded Weighted Depth Trees Instances
	6 Examples
	References

	Adaptivity Gaps for the Stochastic Boolean Function Evaluation Problem
	1 Introduction
	1.1 Connection to st-Connectivity in Uncertain Networks
	1.2 Related Work
	1.3 Preliminaries

	2 Warm Up: Adaptivity Gaps for Read-Once DNFs
	2.1 Unit Costs and the Uniform Distribution
	2.2 Unit Costs and Arbitrary Probabilities
	2.3 Arbitrary Costs and the Uniform Distribution

	3 Main Result: Read-Once Formulas
	4 DNF Formulas
	5 Conclusion and Open Problems
	A Additional Proofs
	References

	On Streaming Algorithms for Geometric Independent Set and Clique
	1 Introduction
	1.1 Our Results

	2 Independent Sets in Streams of Segments
	3 Intervals and Segments are Different
	4 Independent Sets in Streams of c-Intervals
	5 Independent Sets in Streams of Unit-Height Rectangles
	6 Clique in Streams of Intervals and Segments
	7 Conclusion
	References

	Approximating Length-Restricted Means Under Dynamic Time Warping
	1 Introduction
	1.1 Related Work
	1.2 Overview of Results
	1.3 Preliminaries

	2 Tractability of the Restricted Mean Problem
	2.1 Exact Computation of a Restricted 2-Mean in Euclidean Space
	2.2 Constant-Factor Approximation of the Restricted p-Mean
	2.3 Simplifications and the Triangle Inequality
	2.4 Approximation Scheme for Point Sequences in Euclidean Spaces

	3 Application to Clustering
	3.1 (k,,p,p)-Clustering
	3.2 k-medians Under p-DTW

	4 Conclusions
	References

	Author Index

